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Abstract

A growing body of evidence suggests that an important reason why firms do not change

prices nearly as much as standard theory predicts is out of concern for disrupting ongoing cus-

tomer relationships because price changes may be viewed as “unfair.” Existing models that try

to capture this concern regarding price-setting are all based on goods markets that are fun-

damentally Walrasian. In Walrasian goods markets, transactions are spot, making the idea

of ongoing customer relationships somewhat difficult to understand. We develop a simple dy-

namic general equilibrium model of a search-based goods market to make precise the notion of

a customer as a repeat buyer at a particular location. In this environment, the transactions

price plays a distributive role as well as an allocative role. We exploit this distributive role of

prices to explore how concerns for fairness influence price dynamics. Using pricing schemes with

bargaining-theoretic foundations, we show that the particular way in which a “fair” outcome is

determined matters for price dynamics. The most stark result we find is that complete price

stability can arise endogenously. These are issues about which models based on standard Wal-

rasian goods markets are silent.
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1 Introduction

A growing body of evidence suggests that an important reason why firms do not change prices nearly

as much as standard theory predicts is out of concern for disrupting ongoing customer relationships

because price changes may be viewed as “unfair.” Several recently-developed models try to capture

this concern regarding price-setting, but in all of them the underlying model of the goods market is

Walrasian. In Walrasian goods markets, transactions are spot, making the idea of ongoing customer

relationships somewhat difficult to understand. Instead, models that feature explicit bilateral

relationships between customers and firms seem to be called for in order to study the interactions

between customer relationships and price rigidities. We develop a simple model that embeds a

search-based goods market in an otherwise-standard dynamic general equilibrium model, making

the notion of a customer as a repeat buyer at a particular location well-defined. In this framework,

the transactions price (the terms of trade) plays a distributive role as well as an allocative role. We

exploit this distributive role of prices to explore how concerns for fairness influence price dynamics.

The most stark result we find is that if pricing is guided by a “fairness norm,” complete price stability

can arise endogenously. More generally, the consequences of menu costs of price adjustment on the

dynamics of prices and allocations depend crucially on the manner in which price and quantity in

specific relationships are determined, something about which standard models based on Walrasian

goods markets are silent.

The two foundations of our model are a specific notion of customer relationships and menu costs

of changing prices in those customer markets. In our model, customer relationships are valuable to

both consumers and firms because of search frictions that each must overcome before goods trade

can occur. The presence of search frictions leads to a surplus when a customer and a firm meet, and

the parties must decide how to share the local monopoly rents. Regarding menu costs, we do not

claim we have an explanation any deeper than existing ones for why there may be costs of changing

prices; for convenience, such costs can be thought of in the typical fashion of costs associated with

recording, reporting, and implementing new prices. By situating menu costs in a clearly-defined

concept of a customer relationship, however, we are able to show that the consequences of price

rigidities as typically formulated may depend critically on how prices and quantities traded are

determined in specific relationships.

We focus on bargaining schemes as the mechanism by which prices and quantities are determined

in customer markets. Despite using the formalisms of bargaining theory, we do not need to take

literally the idea that customers and firms haggle over prices in every meeting. Rather, it seems

to us that the idea that customers wield some “bargaining power” accords with the evidence of

Blinder et al (1998) and others that firms often try to avoid upsetting their existing customers.

Given this interpretation, we adopt three bargaining protocols to pin down terms of trade
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between customers and firms: Nash bargaining, proportional bargaining, and a pricing system

that we refer to as fair bargaining. We adopt Nash bargaining as a benchmark because of its

familiarity: it has recently become relatively well-understood in macroeconomics due to the ongoing

explosion of quantitative labor search models that employ it. Both proportional bargaining and

fair bargaining implement an idea of a fairness norm under which parties always split the surplus

in a fixed proportion, a feature that Nash bargaining does not always respect. The main difference

between proportional bargaining and fair bargaining is the manner in which parties arrive at the fair

outcome. Proportional bargaining assumes that the fair outcome is achieved through a mechanical

sharing rule. In contrast, our notion of fair bargaining, although not axiomatic like the Nash

and proportional outcomes, attempts to retain Nash bargaining’s strategic foundation by imposing

fairness as a constraint on the standard Nash optimization problem.

Akerlof (2007) makes the case that incorporating norms in macroeconomic models may be an

evolutionary step for the field. We view our fairness norm, whether captured through propor-

tional bargaining or fair bargaining, as in this spirit. We also view our idea as complementary to

Rotemberg (2005, 2006), who has also stressed the notion that modeling fairness in pricing may

be important. The crucial way in which our models of fair-pricing differ from Rotemberg (2005,

2006) is that we embed fairness as a feature of the trading structure of the environment, rather

than altering preferences to account for it.

In our model, if there are no menu costs, the Nash-bargaining outcome, the proportional-

bargaining outcome, and the fair-bargaining outcome all coincide. In the presence of menu costs,

however, the three bargaining protocols imply quite different dynamics of prices and allocations.

Under proportional bargaining, menu costs turn out to be completely irrelevant for both quantity

and price dynamics, which seems to accord with survey evidence, such as Blinder et al (1998)

and Fabiani et al (2006), that menu costs are not a very important friction in practice. Under fair

bargaining, prices always remain at their steady-state values and dynamic allocations are completely

unaffected by price rigidity. The key to understanding the dynamics under both proportional

bargaining and fair bargaining is the fact that under Nash bargaining, price movements cause a

time-varying wedge between short-run and long-run shares of the surplus accruing to customers and

firms. With a fairness norm, parties eliminate such wedges, but the way in which the wedges are

eliminated matters. If the wedges are eliminated according to proportional bargaining’s mechanical

sharing rule, customers and firms efficiently and equally share the consequences of menu costs and

are able to engineer the zero-menu-cost Nash outcome. On the other hand, if the wedges are

eliminated with the strategic considerations of fair bargaining in the background, menu costs are

borne entirely by firms and eliminating the wedges requires complete price stability.

Due to the presence of local monopoly rents, our model also has something to say about markup
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behavior irrespective of menu costs. There lately has been a surge of interest in developing models

in which markups are endogenously time-varying for reasons other than the presence of price

rigidities.1 Our flexible-price models deliver a time-varying markup; moreover, the flexible-price

markup is countercyclical with respect to demand shocks, which seems to accord with empirical

evidence and which has been the attention of much modeling effort. However, with fair bargaining

and the presence of menu costs, the markup is constant, which is simply a reflection of the fact

that both prices and marginal cost are time-invariant under fair bargaining.

In terms of bringing to bear data on our model, we exploit a central idea captured by our

model: firms and consumers expend resources looking for trading partners. In our model, firms

direct resources towards advertising in order to attract customers, and shoppers spend time looking

for and purchasing goods from firms. Empirical evidence shows that the resources expended in such

search activities are not negligible. Firm expenditures on advertising constitute over two percent

of GDP, and time-use surveys show that individuals spend an average of about one hour per day

shopping. Using such evidence, we can calibrate two deep features of our model. A by-product

of our structure is that our model reproduces remarkably well the cyclical dynamics of aggregate

advertising behavior in U.S. data.

We articulate our ideas in a non-monetary model, meaning the price dynamics on which we

focus are those of real (relative) prices. It is apparent that much interest would lie in whether and

to what extent our results carry over to monetary environments. We have reason to believe that

the crucial aspects of our results — namely, that the consequences of menu costs depend critically

on how customers and firms determine prices and quantities and, in particular, the conclusion that

some trading arrangements would lead to the endogenous emergence of price stability — would

carry over to monetary economies because the core mechanisms at work in our environment do

not depend on things being cast in nominal or real terms. However, adding a monetary dimension

to our model may not be as straightforward as imposing an ad-hoc cash-in-advance constraint or

other typical monetary formulation used in the literature because once customer relationships are

modeled explicitly, we may have to be careful about issues such as which consumers carry cash,

which firms require payment in cash, etc. A monetary extension seems a logical next step; here,

though, we concentrate on understanding some basic principles of the interactions between price

rigidity and customer relationships.

Hall (2007) takes a very similar view of product markets as we take here and does use it to

think about monetary policy issues. As in our model, the price at which goods change hands

in Hall’s (2007) model plays a distributive role in additional to the standard allocational role.
1Some examples are Jaimovich (2006), Ravn, Schmitt-Grohe, and Uribe (2006), and Gust, Leduc, and Vigfusson

(2006).
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Different prices inside a customer relationship achieve different distributions of the surplus between

the consumer and the firm, but this does not affect the underlying efficiency of a trade. This

admits the possibility of, in Hall’s (2007) language, equilibrium sticky prices in customer markets.

Given what we perceive as a growing sense of frustration with pricing models currently used in

macroeconomic models, stemming from the growing body of micro pricing facts that challenge

standard time-dependent or state-dependent pricing rules, allowing a distributional role for prices,

as both our model and Hall’s (2007) model do, may be a useful new direction for macroeconomic

models. It seems to us that allowing this additional role for prices accords better with the idea

that firms do not re-set prices out of worry for upsetting customers than do standard views of price

rigidity. Besides the difference in focus on monetary versus non-monetary issues, we think another

aspect of our model that sets it apart from Hall’s (2007) is that we embed it from the start in a

fully-articulated, quantitative DSGE environment, making comparisons with predictions of existing

DSGE models straightforward.

Indeed, there lately has been a general surge of interest in developing simple structures of

customer-firm interactions that can be tractably incorporated into state-of-the-art quantitative

macroeconomic models. Our work here also falls into this broad category. A few recent examples

of work in this broadly-defined area are the deep habits models of Ravn, Schmitt-Grohe, and

Uribe (2006) and Nakamura and Steinsson (2007) and the switching-cost model of Kleschelski and

Vincent (2007). As we mentioned, in terms of some basic motivation — the idea that fairness

norms may interact with or may lead to price rigidity — the studies by Rotemberg (2005, 2006)

are the closest in spirit to what we set out to achieve here. We view our work as complementary

to all these recent efforts because we model customer relationships and fairness concerns through

trading arrangements rather than essentially just through preferences. One could of course go

back much further and tie ideas to the rich customer-markets literature, which includes studies by,

among many others, Diamond (1971) and Klemperer (1995). Okun (1981) voices some of the ideas

— namely, that search frictions in goods markets may have important consequences for aggregate

phenomena — that we formalize through a modern search and matching framework. We certainly

cannot do justice to the rich history of thought on these topics.

The rest of our paper is organized as follows. In Section 2, we lay out our baseline model with

standard Nash bargaining, proportional bargaining, and fair bargaining. In the baseline model,

only an extensive margin of consumption exists, and bargaining occurs just over the price paid

by the customer. We provide some partial equilibrium analytics in Section 3, which illustrate

the core forces at work in our environment. We examine the fully general equilibrium baseline

model’s numerical properties in Section 4, including a discussion of how and why fair bargaining

leads to complete price rigidity in the face of arbitrarily small menu costs of price adjustment.
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In Section 5, we enrich our environment to allow for bargaining over both price and quantity in

a given customer relationship, thus allowing for extensive and intensive margins of consumption.

Finally, in Section 6, we briefly extend our model to include exogenous government purchases to

demonstrate that our basic results carry over to an environment with demand shocks. Section 7

concludes and offers some ideas for continuing work. Most of the derivations of key relationships

in our model are relegated to the appendices.

2 Baseline Model

Our key point of departure from standard macro models is that, for some goods trades, households

and firms each have to expend resources finding individuals on the other side of the market with

whom to trade. A fraction of goods market exchange is thus explicitly bilateral, in contrast to

all trades happening against the anonymous Walrasian auctioneer. Our model also does feature

standard Walrasian goods for which search frictions are absent. We believe this view of goods

markets is quite natural — some goods require effort to find and some goods do not. For search

goods, households spend time looking for firms from which to purchase goods, while firms direct

part of their revenues towards trying to attract customers. We think of these two search activities

as shopping and advertising, respectively.

Because we want to avoid taking a specific stand on the details of why it is that goods-market

trading is costly — there are probably a great many reasons — we adopt the modeling device of an

aggregate matching function from the labor search literature. Hall (2007) also takes this route. We

describe more fully this matching mechanism below.2 For our purposes, the important consequence

of these search and matching frictions is that once a customer relationship is formed, each party has

an incentive to keep the match intact because dissolving the relationship would mean each has to

re-enter the costly search process. The existence of a surplus to be shared in a customer relationship

means that we must think beyond standard Walrasian marginal pricing conditions because prices

play both distributional and allocative roles. In the rest of this section, we describe in detail the

households and firms in our model as well as the rest of the economic environment.

2.1 Households

There is a measure one of identical households, with a measure one of individuals that live within

each household. In a given period, an individual member of the representative household can be

engaged in one of four activities: purchasing goods (shopping) at a firm, working, searching for
2Those familiar with the basic labor search model as described by Pissarides (2000, chapter 1), will find close

analogies in several of our modeling choices.
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goods, or leisure. More specifically, lt members of the household are working in a given period; st

members are searching for firms from which to buy goods; Nh
t members are shopping at firms with

which they previously formed relationships; and 1− lt−st−Nh
t members are enjoying leisure. Note

our distinction between shopping and searching for goods. Individuals who are searching are looking

to form relationships with firms, which takes time. Individuals who are shopping were previously

successful in forming customer relationships, but the act of acquiring and bringing home goods

itself takes time.3 We assume that the members of a household share equally the consumption that

shoppers acquire.

With this atomistic structure, we assume that lifetime discounted household utility is

E0

∞∑
t=0

βt

[
u(xt) + ϑv

(∫ Nh
t

0
citdi

)
+ g(1− lt − st −Nh

t )

]
(1)

where x is consumption of a standard Walrasian good and ci is the quantity of the search good

that shopper i brings back to the household. The household costlessly (aside from the direct

purchase price) and instantaneously purchases the good x, which is of course what it means for

the good to be traded in a Walrasian market. Total consumption
∫Nh

0 cidi of the search goods

obtained by shoppers is pooled by the household and divided equally amongst all family members.

Instantaneous utility over leisure is g(.), and the parameter ϑ governs how the household prefers

to divide its total consumption between search and non-search goods.

Note that consumption of the search good potentially has two dimensions in our model: an

extensive margin (the number of shoppers who buy goods) and an intensive margin (the number of

goods each shopper buys). For the results in this section, we shut down adjustment at the intensive

margin by setting ci = c̄. We begin by closing down the intensive margin for two reasons: doing so

emphasizes the extensive margin, which is the most novel aspect of our model, and it also allows

us some flexibility in calibrating our model. We discuss this issue further below when we present

the calibration of the baseline model. In section 5, we endogenize adjustment at the intensive

margin of consumption. In the remainder of this section, then, we specialize to the case cit = c̄,

and our notation reflects this. Finally, we point out that searching and shopping each detract from

household leisure in the same, linear, manner.4

3For example, even if one knows exactly where to go to buy certain goods, one may still have to walk around the

aisles, stand in the checkout line, etc.
4We recognize that in making N and s perfect substitutes in how they detract from utility — each unit of N or s

is equivalent to forgoing one unit of leisure — we are taking a particular stand on the relative disutility of what we

term searching versus shopping. A more general specification that allows for finer distinction between the disutility

from shopping versus from searching would be u(x, l, s, N). Because we think we would not have sufficient guidance

from data or existing models on how to calibrate, let alone construct, such a function, we adopt the formulation that

we do. Despite limitations imposed by data and the lack of previous such modeling efforts, it has been suggested
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Whether or not we allow intensive adjustment, note that the aggregator inside v(.) is linear in

the total amount of search goods, meaning what we have in mind is a world in which all search

goods are perfect substitutes in utility. Our baseline model focuses on this polar case because it

means that any “monopoly markups” that arise in our model are due solely to search and matching

frictions that create temporary bilateral monopolies, rather than to any ex-ante differentiation of

products that create pure monopolies. That is, beginning with this assumption again allows us to

isolate effects stemming from the search frictions in goods markets. As we will see in section 5, in

order to endogenize the intensive quantity traded, we must add some curvature to the consumption

aggregator inside v(.). The economic content of such curvature is that goods obtained from distinct

matches are imperfect substitutes. We defer further discussion on this point until we encounter the

full model in section 5.

Using ci = c̄ for now, then, the flow budget constraint the household faces is

xt +
∫ Nh

t

0
pitc̄di+ bt = wtlt +Rtbt−1 + dt, (2)

where bt−1 is holdings of a state-contingent one-period real private bond at the end of period t− 1,

which has gross payoff Rt at the beginning of period t, wt is the real wage, and dt is firm dividends

received lump-sum by the household. The Walrasian good x serves as the numeraire, hence the

price pi of a given search good is measured in units of x. With this structure so far, the household’s

first-order conditions with respect to Walrasian consumption xt, labor lt, and bond holdings bt are,

respectively,

u′(xt)− λt = 0, (3)

−g′(1− lt − st −Nh
t ) + λtwt = 0, (4)

−λt + βEt {λt+1Rt+1} = 0, (5)

where λt is the Lagrange multiplier associated with the time-t flow budget constraint and measures,

in equilibrium, the marginal value of wealth to the household. Conditions (3), (4), and (5) are

completely standard and imply the usual consumption-leisure optimality condition

g′(1− lt − st −Nh
t )

u′(xt)
= wt (6)

to us that perhaps shopping does not entail disutility at all and that it is only searching that is associated with

disutility. In that case, we may consider writing u(c, 1 − l − s), in which s continues to detract from leisure, which

has some precedent from “shopping-time” models, but N does not. We do not have a strong prior regarding this

latter view that shopping and searching are sufficiently distinct activities. Thus, rather than present a dizzying array

of alternative preference specifications, our approach is to simply lump shopping and searching together in terms of

utils and see how much progress we can make on our core ideas. If the primitive trading arrangements our model

emphasizes (which are independent of how we wish to write preferences) are deemed sufficiently useful, one may want

to consider alternative preference specifications.
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and consumption-savings optimality condition

u′(xt) = βEt
{
u′(xt+1)Rt+1

}
. (7)

The household must also choose how much effort to devote to searching and a desired number

of future shoppers; Nh
t is not free to be chosen at the beginning of period t because that depends on

how many searchers were previously successful in forming customer relationships. The household

faces a perceived law of motion for the number of active customer relationships in which it is

engaged,

Nh
t+1 = (1− ρx)(Nh

t + stk
h(θt)), (8)

where kh is the probability that a searcher finds a good. This matching probability depends on

θ ≡ a/s, which measures the tightness of the goods market — how many advertisements there

are per searcher — and is taken as given by the household. With fixed probability ρx, which is

known to both households and firms, an existing customer relationship dissolves at the beginning

of a period. The dissolution of a customer relationship may occur for any of a number of reasons:

the customer may move away, the firm may close shop, the customer may simply choose to stop

visiting the same store for some reason, and so on. A natural potential future extension would be

to endogenize the rate at which customer-firm relationships break up.

Finally, then, the household first-order conditions with respect to st and Nh
t+1 are

−g′(1− lt − st −Nh
t ) + (1− ρx)µh

t k
h(θt) = 0 (9)

and

−µh
t + β(1− ρx)Etµ

h
t+1 − βEt {λt+1pNt+1c̄}+ βEt

{
ϑv′

(∫ Nh
t+1

0

c̄di

)
c̄− g′(1− lt+1 − st+1 −Nh

t+1)

}
= 0,

(10)

where µh
t is the Lagrange multiplier on the law of motion for shoppers, pNt+1 is the relative price

of the N -th good at time t + 1, and c̄ is the fixed quantity consumed of the N -th good at time

t+ 1. As we present below, the price pi is determined in bargaining. From here on, we conserve on

notation by using v′t to stand for v′
(∫Nh

t
0 c̄di

)
, g′t to stand for g′(1− lt − st −Nh

t ), and u′t to stand

for u′(xt).

Having taken first-order conditions and given that we restrict attention to symmetric equilibria

in which pi = pj for all i 6= j, the first-order condition on Nh
t+1 becomes

−µh
t + β(1− ρx)Etµ

h
t+1 − βEt {λt+1pt+1c̄}+ βEt

{
ϑv′t+1c̄− g′t+1

}
= 0, (11)

where pt+1 now stands for the real (measured in units of x) price of any given good for which there

exists a customer-firm relationship. Condensing this expression with the household first-order
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condition on s, we have

g′t
kh(θt)

= β(1− ρx)Et

{
ϑv′t+1c̄− g′t+1 − λt+1pt+1c̄+

g′t+1

kh(θt+1)

}
. (12)

Using (3) and re-grouping terms, we have

g′t
kh(θt)

= β(1− ρx)Et

{
c̄
[
ϑv′t+1 − pt+1u

′(xt+1)
]
− g′t+1 +

g′t+1

kh(θt+1)

}
, (13)

which we refer to as the household’s shopping condition. The shopping condition simply states that

at the optimum, the household should send a number of individuals out to search for goods such that

the expected marginal cost of shopping (the left-hand-side of (13)) equals the expected marginal

benefit of shopping (the right-hand-side of (13)). The expected marginal benefit of shopping is

composed of two parts: the utility gain from obtaining c̄ more goods via the search market rather

than via the Walrasian market (net of the direct disutility g′ of shopping) and the benefit to the

household of having one additional pre-existing customer relationship entering period t + 1. If all

trades were frictionless, household optimal choices would imply ϑv′t = ptu
′(xt). With frictions, in

order to engage in costly search, it must be that on the margin, the household expects ϑv′t+1 >

pt+1u
′(xt+1).5 This positive flow return ensures that the household finds it worthwhile to send

some of its members shopping.

2.2 Walrasian Firms

To make pricing labor simple, we assume that there is a representative firm that buys labor in

and sells the Walrasian good x in competitive spot markets. The firm operates a linear production

technology that is subject to aggregate TFP fluctuations, yt = ztl
W
t , where lW denotes the labor

hired by Walrasian firms. Profit-maximization yields the standard result that

wt = zt, (14)

which all participants in the economy, including the non-Walrasian firms described next, take as

given.6

5In the calibrated version of the model, this condition does indeed hold, but it is likely not a theorem that this

condition must hold. For some parameterizations, it is likely that the condition fails, in which case a participation

constraint would be needed to ensure an equilibrium in which search goods are desirable. We echo and expand on

this point in the context of firm incentives in this environment when we discuss the model with intensive adjustment

in section 5.
6A structure isomorphic to our division into Walrasian firms and non-Walrasian firms described next is to suppose

that there is a single representative firm that hires labor to produce output, some of which it sells directly to consumers

via Walrasian markets and some of which it sells via search-based channels. One could labels these two channels of

sales to consumers as “wholesale” and “retail” channels, which would make the environment look more similar to

that of Hall (2007).
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2.3 Non-Walrasian Firms

We also assume that there is a representative firm that sells a large number of goods in bilateral

trades. For each good that it sells, the representative search firm must first attract customers.

To attract customers, the firm must advertise, and how any given level of advertisements it posts

maps into how many customers it finds is governed by a matching technology to be described below.

Owing to frictions associated with finding customers, the firm views existing customers as assets.

Its total stock of customers evolves according to the perceived law of motion

Nf
t+1 = (1− ρx)(Nf

t + atk
f (θt)), (15)

where at is the number of advertisements the firm posts in period t, and kf is the probability that

one of the firm’s advertisements attracts a customer, which depends on goods market tightness θ;

θ is taken as given by the firm.

As with competitive firms, the production technology is linear in labor and subject to an

exogenous aggregate productivity shock. Total output of the non-Walrasian firm is thus yt = ztl
A
t ,

where lA denotes the labor hired by the non-Walrasian firm. Because we assume a constant-returns

production technology with no fixed costs of production (there is a fixed cost of advertising, but

no fixed cost of producing), its real marginal cost of production is constant and coincides with

average cost.7 Denoting marginal production cost by mct in period t, we can express the firm’s

total production costs as the sum of production costs across all of its customer relationships,∫Nf
t

0 mctcitdi.

The firm also faces a menu cost of adjusting the per-unit price of each good it sells to a given

customer. Specifically, we use a Rotemberg-type quadratic cost of price adjustment, which is a

fairly conventional way of modeling menu costs. As we mentioned earlier, our goal is not to provide

a compelling micro-foundation for why price adjustment may entail costs; rather, adopting a typical

reduced-form specification is just a tractable way to get at our ultimate objective.

With this structure in place, total profits of the representative search firm in a given period t

are ∫ Nf
t

0
pitcitdi−

∫ Nf
t

0
mctcitdi−

∫ Nf
t

0

κ

2

(
pit

pit−1
− 1

)2

− γat, (16)

where pit is the relative price (which is, recall again, measured in units of x) of good i, γ is the

flow cost of an advertisement, thus γat is the total flow advertising cost the firm incurs. We again

specialize right away to the case ci = c̄ and, as we have already mentioned, defer considering

intensive adjustment until section 5. The parameter κ measures how large menu costs are; setting

κ = 0 of course means there are no menu costs. The firm’s customer base Nf
t is pre-determined

7To preview the equilibrium, mct = 1 ∀t in our model because we have wt = zt.
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entering period t. Discounted lifetime profits of the firm are thus

E0

∞∑
t=0

Ξt|0

[∫ Nf
t

0
pitc̄di−

∫ Nf
t

0
mctc̄di−

∫ Nf
t

0

κ

2

(
pit

pit−1
− 1

)2

− γat

]
, (17)

where Ξt|0 is the period-0 value to the household of period-t goods, which we assume the firm uses

to discount profit flows because the households are the ultimate owners of firms.8

The problem of the firm is thus to maximize (17) subject to the evolution of its customer

base (15) by choosing {at, N
f
t+1}. In the firm’s pursuit of customers, it takes pi and c̄ as given

because those will be determined in the trading protocols to be described below. Note an important

point of departure from standard macro models of goods markets: the firm is not a unilateral price-

setter here.9 The first-order conditions with respect to {at, N
f
t+1} thus are

−γ + (1− ρx)µf
t k

f (θt) = 0 (18)

and

−Ξt|0µ
f
t +(1−ρx)Et

{
Ξt+1|0µ

f
t+1

}
+Et

Ξt+1|0

pN,t+1c̄−mct+1c̄−
κ

2

(
pN,t+1

pN,t
− 1

)2
 = 0, (19)

where µf
t is the Lagrange multiplier on the firm’s customer constraint. Condensing these first-order

conditions, we arrive at the firm’s optimal advertising condition,

γ

kf (θt)
= (1− ρx)Et

Ξt+1|t

pt+1c̄−mct+1c̄−
κ

2

(
pN,t+1

pN,t
− 1

)2

+
γ

kf (θt+1)

 , (20)

where Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the household discount factor (again, technically, the real interest

rate) between period t and t + 1. In equilibrium, Ξt+1|t = βλt+1

λt
, which in turn, by the household

optimality condition (3), is Ξt+1|t = βu′(xt+1)
u′(xt)

. In writing (20), we have also imposed symmetric

equilibrium, in which pit = pjt = pt for any i 6= j.

The advertising condition states that at the optimum, the expected marginal cost of posting an

ad (the left-hand-side of (20)) equals the expected marginal benefit of forming a relationship with a

new customer (the right-hand-side of (20)). The expected marginal benefit takes into account the

revenue from selling to one extra customer, the production costs incurred for producing to sell those
8Technically, of course, it is the real interest rate with which firms discount profits, and in equilibrium the real

interest rate between time zero and time t is measured by Ξt|0. Because there will be no confusion using this

equilibrium result “too early,” we skip this intermediate level of notation and structure.
9The fact that price is “taken as given” as the firm optimally chooses its level of advertising might lead some to

interpret this model as one in which firms have a primitive concern for maximizing their market share, an objective

that some models of customer relations do posit. While this is somewhat a semantic point, we note that it is in fact

profits that the firms in our environment maximize. It is just that firms are not free to unilaterally set prices to

achieve maximum profits, rather they must form relationships before determining prices jointly with customers.
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extra units, future menu costs in that customer relationship, and the cost savings of finding another

customer in the future due to the pre-existing (in time t+1) customer relationship. Condition (20)

is a free-entry condition in advertising. The fact that an entry decision must be made before a firm

can enjoy any profit flows means that profit flows from sales of goods are not pure rents as they

are in commonly-employed formulations of goods markets.

2.4 Price Determination

With bilateral relationships between customers and firms, there is an array of ways to think about

how prices are determined. We focus on three bargaining schemes, two that are axiomatic and one

that, although it is not axiomatic, seems to us to capture important intuitive elements underlying

each of the two axiomatic schemes. In considering bargaining, we do not need to take literally the

idea that customers and firms haggle over prices in every meeting, even though that is the formalism

we use. Rather, it seems to us that the idea that customers wield some “bargaining power” accords

with the evidence that firms often try to avoid “upsetting their existing customers.”

To make progress with this idea, then, we consider three bargaining protocols. The first protocol

is Nash bargaining, the second is proportional bargaining, and the third is a modified Nash problem

in which the two parties always divide the match surplus in a fixed proportion. We refer to this

third trading protocol as fair bargaining, although we recognize that bargaining theorists would

not accord this trading protocol “bargaining” status. Conceding this point, we nonetheless use the

term fair bargaining to make the discussions symmetric.

Proportional bargaining and fair bargaining implement the idea of “fairness” in trading out-

comes in similar, but distinct, ways. Our specific notion of fairness is one in which the surplus

accruing to customers is always a fixed ratio of the surplus accruing to firms. Clearly, as discussed

by Binmore (2007) and many others, there are a great many ways to operationalize the concept of

fairness. Given our environment of explicit relationships between consumers and firms, we think

ours is at least one natural definition. As we show below, and is well-known in bargaining appli-

cations (see Aruoba, Rocheteau, and Waller (2007) for a particularly recent application), the Nash

solution does not generally satisfy this definition of fairness.

It is well-understood that Nash bargaining has explicit strategic foundations. Specifically, Ru-

binstein (1982) shows that the Nash bargaining solution is the limiting solution of a strategic

alternating-offers bargaining environment. In contrast, proportional bargaining, while it does, as

we show below, capture our definition of fairness, does not have as clear a strategic foundation.

Instead, it accords better with the concept of a focal-point equilibrium, an outcome that, perhaps

for some evolutionary reason, simply is the accepted social norm. Experimental evidence on bilat-

eral games people play, summarized by, among others, Binmore (2007, Chapter 6), suggests that
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both strategic and focal-point elements are typically at work. This motivates us to construct our

fair-bargaining scheme in an attempt to retain the strategic element inherent in Nash bargaining

as well as the fairness/focal-point element inherent in proportional bargaining.

2.4.1 Nash Bargaining

In Nash bargaining over the i-th product, the firm and the customer jointly choose pit to maximize

the Nash product

(Mt − St)ηAt
1−η, (21)

where Mt is the value to a household of having a member engaged in a relationship with a firm,

St is the value to a household of having a member searching for goods, At is the value to a firm of

being engaged in a relationship with a customer, and η is a standard time-invariant Nash bargaining

weight. The value to a firm of an advertisement that failed to attract any customers is normalized

to zero. As we show in Appendix B (where we present the definitions of M, S, and A), the price

pit that emerges from Nash bargaining in any particular customer-firm relationship satisfies the

sharing rule

(1− ωt)(Mt − St) = ωtAt, (22)

in which ωt is the effective bargaining power of the customer and 1− ωt is the effective bargaining

power of the firm. Specifically,

ωt ≡
η

η + (1− η)∆F
t /∆H

t

, (23)

where ∆F
t and ∆H

t measure marginal changes in the value of a customer relationship for the firm

and the household, respectively.

We provide more details in Appendix B, but three points are worth mentioning here. First, time-

variation in ωt means that the household’s surplus Mt − St from an active customer relationship

is not a fixed ratio of the firm’s surplus At. The Nash solution thus does not generally satisfy our

definition of fairness. Second, with zero costs of price adjustment in period t (which may arise for

two reasons: either κ = 0 or κ > 0 but pit = pit−1), ωt = η (because in that case ∆F
t /∆

H
t = 1). It

is thus variation in prices coupled with the presence of menu costs that drives a time-varying wedge

between effective bargaining power and the Nash bargaining weights. Indeed, if the Nash product

the customer and firm maximized were (Mt−St)ωtAt
1−ωt rather than (21), the outcome would be

the sharing rule (22). Third, in the long run (i.e., the deterministic steady state), ω = η because

pit = pit−1 = p̄i (recall these are real prices). Thus, the wedge between η and ωt is a business-cycle

phenomenon.

With time-varying effective bargaining power, the price solves

ωt

1− ωt

[
pitc̄−mctc̄−

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(c̄)
λt

− pitc̄+ (24)
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+ (1− θtk
f (θt))Et

[
Ξt+1|t

(
ωt+1

1− ωt+1

)
(1− ρx)

[
pit+1c̄−mct+1c̄−

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
.

where ũ(c̄) is the utility function defined over the quantity consumed of a good obtained from a

given customer relationship (rather than the utility v(.) defined over the household’s aggregate

consumption of search goods
∫N
0 c̄di.).10 The pricing condition (24) shows that price-setting is

forward-looking for two distinct reasons. One reason is a standard sticky-price reason: with costs

of price adjustment, a setting for pit has ramifications for future setting of pit+1. But note that

even with κ = 0, pit is affected by expectations regarding pit+1. This forward-looking aspect of

pricing has to do with the long-lived customer relationship: with probability 1− ρx, the customer

and firm will bargain over the same good again in the future. In typical models, price-setting is

static in the absence of menu costs; in our framework, it is dynamic even in the absence of menu

costs.11

Finally, we note that with κ = 0, the Nash sharing rule (22) reduces to the more standard

(1− η)(Mt − St) = ηAt, and the pricing equation (24) simplifies dramatically to

pit = (1− η)
(
ũ(c̄)
λt

)
+ η(mct − γθt), (25)

which one can obtain by working through the derivations in Appendix B.

2.4.2 Proportional Bargaining

Condition (22) shows that in the presence of menu costs, the surplus is split between consumers

and firms according to time-varying shares. Suppose instead that some fairness norm in pricing

were in place in which the customer and firm ensure that they always split the total surplus in

a time-invariant ratio. An axiomatic solution (see Kalai (1977) for the original exposition) that

guarantees constant splits is the proportional bargaining solution. Under proportional bargaining,

the price pit solves

(1− η)(Mt − St) = ηAt, (26)
10With intensive adjustment not allowed here in our basic model, we could just as well use the notation ū ≡ ũ(c̄)

rather than the structure we present. Looking forward to our full model in section 5, though, the additional notation

here will prove useful in comparing features across models.
11In Ravn, Schmitt-Grohe, and Uribe’s (2006) and Nakamura and Steinnson’s (2007) models, pricing is also forward-

looking despite the absence of menu costs. In their setups, “deep habits,” which are long-lived preference relationships

consumers have with particular goods, are the source of forward-looking pricing. At the core of their models, though,

is still the typical Walrasian goods market, making, in our view, relationships perhaps a more tenuous idea than in

our framework. No matter the relative merits of our approach versus others, a broader idea that emerges is that

one can model long-lived customer relationships through preferences, as Ravn, Schmitt-Grohe and Uribe (2006) and

Nakamura and Steinsson (2007) both do, or through trading arrangements, as we do here.
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without any reference to an underlying maximization problem.12 Substituting the definitions of

Mt, St, and At presented in Appendix B, the proportional-bargaining price solves

η

1− η

[
pitc̄−mctc̄−

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(c̄)
λt

− pitc̄+ (27)

+ (1− θtk
f (θt))

(
η

1− η

)
Et

[
Ξt+1|t(1− ρx)

[
pit+1c̄−mct+1c̄−

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
,

which differs from (24) only in that η/(1− η) replaces ωt/(1− ωt).

2.4.3 Fair Bargaining

As we discussed above, Nash bargaining has clear strategic foundations, while those underlying

proportional bargaining are less clear. To try to capture both the strategic element underlying

Nash bargaining and the focal-point element underlying proportional bargaining — both elements

that the evidence of Binmore (2007) suggests are important for understanding bilateral interactions

— we construct a pricing scheme that draws on both.

The way in which we implement this idea is to continue using the Nash product as the objective

the parties seek to maximize; however, constant shares are now enforced. Specifically, pit is chosen

to maximize

(Mt − St)ηAt
1−η (28)

subject to a constant-split rule

(1− ϕ) (Mt − St) = ϕAt. (29)

The most straightforward constant-split rule to understand is the case ϕ = η, which amounts to

enforcing the standard Nash sharing condition despite the presence of menu costs. We focus just

on this case.13

We provide the details behind this problem in Appendix C, but the outcome of fair bargaining

over price is

κ(πit − 1)πit − (1− ρx)κEt

[
Ξt+1|t(πit+1 − 1)πit+1

]
= 0, (30)

in which πit is defined as the gross rate of price change between period t− 1 and t, πit ≡ pit/pit−1.

If this were a monetary model, we would of course call π inflation and thus may be tempted to
12Technically, one could write an underlying maximization problem that gives rise to this sharing rule, as well, but

for most practical applications, one does not need to do so. For more on the relationship between Nash bargaining

and proportional bargaining, see Kalai (1977).
13Although Nash bargaining is ostensibly at the core of this pricing protocol, we point out that while Nash bargain-

ing, due to its axiomatic nature, is a cooperative equilibrium concept, fair bargaining is a non-cooperative equilibrium

concept. In particular, because by construction Nash bargaining places the bargaining parties on the Pareto frontier,

the fact that the fair-bargaining solution differs necessarily means that it does not place the parties on the Pareto

frontier.
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refer to condition (30) as a modern Phillips curve because it links period-t price growth (inflation)

to expected future price growth (inflation).

What prevents condition (30) from being a Phillips curve (aside from the fact that our model

is not cast in nominal terms) is that it contains nothing at all about allocations. To show how

tantalizingly close (30) is to a standard New Keynesian Phillips curve, compare it with the standard

pricing equation that emerges from New Keynesian models; for example, the analogous condition

in Chugh (2006, equation 7) is

f(mct) + κ(πt − 1)πt − κEt

[
Ξt+1|t(πt+1 − 1)πt+1

]
= 0, (31)

where f is some function that depends on the marginal cost of production.14 The fact that marginal

cost, which reflects something about allocations, appears in a standard New Keynesian Phillips

curve of course provides the linkage between real activity and price movements in that class of

models.

Our fair-pricing condition (30), missing marginal costs, is thus of course not a Phillips curve

because it does not link price changes to real activity. Indeed, it is quite the opposite of the spirit

of a Phillips Curve: condition (30) describes only the dynamics of prices and demonstrates that

the dynamics of allocations are divorced from the dynamics of prices. Thus, price rigidity coupled

with a fairness norm in bargaining effectively decouples prices from quantities in our model.

Finally, we point out that our notion of fairness in pricing is an assertion about the bargaining

protocol. We are not modeling deeper-rooted reasons that may underlie why fair bargaining (or

proportional bargaining, for that matter) may be adopted in the first place. One potential candidate

explanation is the recent model of Rotemberg (2006), in which customer “anger” over prices that

are perceived to be exploitative may lead to a fairness norm. More broadly, Akerlof (2007), in his

overture to macroeconomics to adopt more “norm-based” behavior into standard models, discusses

why incorporating norms and, at least as a first step, ignoring endogeneity of norm adoption may

be an important evolutionary step for the field. Such issues are quite interesting to consider, and

if our model proves to be useful in thinking about some aspects of goods-market relationships, one

may want to embed such mechanisms in our model in future work. For now, our focus is on the

consequences of menu costs of price adjustment given a fairness norm in pricing.

2.5 Goods Market Matching

The number of new customer-firm relationships that are formed in any period t is described by

an aggregate matching function m(st, at). We assume the matching technology is Cobb-Douglas,
14In New Keynesian models, the Phillips curve is essentially just the first-order condition of firms facing rigidities

in their price-setting choices and of course has nothing to do with bargaining.
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m(st, at). With Cobb-Douglas matching, the probabilities that shoppers and firms, respectively,

find partners is

kh(θ) =
m(s, a)

s
= m

(
1,
a

s

)
= m(1, θ) (32)

kf (θ) =
m(s, a)
a

= m

(
s

a
, 1
)

= m(θ−1, 1), (33)

with θ ≡ a/s a measure of how thick (the ratio of firms searching for customers to individuals

searching for goods) the goods market is.

As in the labor search literature, the matching function is meant to be a reduced-form way of

capturing the idea that it takes time for parties on opposite sides of the market to meet. Rogerson,

Shimer, and Wright (2005, p. 968) note that the ability to be agnostic about the actual mechanics

of the process by which parties make contact with each other may be a virtue. Our modeling

motivation is very much in line with this idea.

With the matching function describing the flow of new customer relationships, the aggregate

number of active customer relationships evolves according to

Nt+1 = (1− ρx)(Nt +m(st, at)). (34)

2.6 Resource Constraint

Total output of the economy is absorbed by Walrasian consumption, non-Walrasian consumption,

price adjustment costs, and advertising costs. The resource constraint is thus

xt +
∫ Nt

0
citdi+

∫ Nt

0

κ

2
(πt − 1)2 + γat = ztlt. (35)

2.7 Equilibrium

We restrict attention to a symmetric equilibrium in which the price p is identical across all active

customer relationships. Because (part of) goods trade is carried out in non-Walrasian markets, the

core notion of equilibrium in our model is that of a search equilibrium, rather than a competitive

equilibrium. This motivates the definition of a symmetric search equilibrium for our model.

A symmetric search equilibrium is endogenous processes for the household’s choice {xt, lt, st, N
h
t+1, bt}∞t=0,

the Walrasian firm’s choice {lWt }∞t=0, the non-Walrasian firm’s choice {at, N
f
t+1, l

A
t }∞t=0, the real

wage {wt}∞t=0, bond returns {Rt}∞t=0, dividends {dt}∞t=0, prices in the non-Walrasian goods market

{pt}∞t=0, and matching probabilities {kh
t , k

f
t }∞t=0 such that

• given {pt, wt, Rt, dt, k
h
t , k

f
t }∞t=0, the household maximizes (1) subject to (2) and (8);

• given {wt}∞t=0, the Walrasian firm chooses labor to maximize profit;

• given {pt, wt, k
h
t , k

f
t }∞t=0, the non-Walrasian firm maximizes (17) subject to (15);
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• {pt}∞t=0 satisfies either (24) (Nash bargaining) or (30) (fair bargaining);

• the resource constraint (35) holds for t = 0, 1, ....;

• the labor market clears, {lt = lWt + lAt }∞t=0;

• the customer market clears, {Nh
t = Nf

t }∞t=0;

• the aggregate law of motion for active customer relationships is given by (34) for t = 0, 1, ....;

• the bond market clears, {bt = 0}∞t=0;

• dividends {dt}∞t=0 are determined residually from the non-Walrasian firm’s profit function;

• {kh
t , k

f
t }∞t=0 are given by (32) and (33).

Collecting conditions that summarize the equilibrium, equilibrium is endogenous processes

{xt, Nt, pt, st, at, lt, wt, Rt}∞t=0 that satisfy (6), (7), (13), (14), (20), either (24) or (30), (34), and (35),

for given exogenous process {zt}∞t=0.

3 Partial Equilibrium Analytics

Our main interest lies in some general equilibrium business cycle consequences of search frictions

in goods trade and price rigidity. However, we can gain a lot of intuition for the economic forces

at work in our model by examining both analytically and numerically its steady-state equilibrium.

The triple (p, θ, s) are the most important endogenous variables describing our frictional goods

market.15 Features such as the intensive quantity c, presence of a production technology, and

endogenous labor force participation are all present to make our model quantitatively realistic

and readily comparable to other quantitative macroeconomic models. We again emphasize that

the fundamental notion of goods-market equilibrium here is that of a search equilibrium, not a

Walrasian (or Walrasian-based) equilibrium.16

To make some analytical progress, then, for the moment suppose the general equilibrium features

of our model were shut down. Specifically, suppose c = 1 and labor is not needed (l = 0).17 In
15In this regard, there is a very tight analogy with the basic static labor search model, as described by Pissarides

(2000, chapter 1), as we mentioned earlier. Those familiar with the textbook labor search model will find the

analytical exposition here extremely familiar; because there are a couple of details that do not carry over completely

(but, admittedly, nearly completely) identically, we think it worthwhile to explain the basics.
16As is apparent, what we discuss in this section is equilibrium in the search-goods market; Walrasian equilibrium

is of course the relevant equilibrium concept for the good x.
17Really all we require for this partial equilibrium steady-state analysis is just that labor is fixed at l = l̄. Going

all the way to essentially an endowment model — in which when a firm finds a customer to whom to sell, product

magically appears — in which l = 0 just eases the ensuing exposition a bit.
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this partial equilibrium version of our model, then, imposing steady-state on the firm advertising

condition gives us
γ

kf (θ)
=

β(1− ρx)
1− β(1− ρx)

(p−mc), (36)

in which we have used the fact that in the deterministic steady state, prices do not change (remem-

ber, these are real prices), hence there are no menu costs of price adjustment. With Cobb-Douglas

matching, the probability a firm that has advertised matches with a customer is kf (θ) = θ−ξ.

Imposing this and rearranging, we have

β(1− ρx)
1− β(1− ρx)

p =
β(1− ρx)

1− β(1− ρx)
mc+ γθξ, (37)

which shows that the markup of price over marginal cost of production is governed by the advertising

cost γ and customer market tightness θ. If γ = 0, we have p = mc, which makes perfect sense

because in that case it is costless for firms to find customers and we have assumed that goods are

ex-ante perfect substitutes; in other words, the goods market is (nearly) Walrasian with γ = 0.

With γ = 0, firms make normal profits by charging simply their marginal production cost as in

a textbook model. Clearly, then, it is the search friction embodied in γθξ that drives a wedge

between price and marginal production cost. Indeed, because γθξ ≥ 0, p ≥ mc. Figure 1 shows

that the advertising condition is upward-sloping in (p, θ) space.18 To preview some of the intuition

behind the dynamics of markups we present soon: because θ in general will vary over time as

part of business cycle fluctuations, the markup of price over marginal production cost should be

expected to be time-varying, and this markup is endogenous. Time-variation in search costs drives

time-variation in markups in our framework.19

To determine the steady-state (p, θ), we must also examine (the steady-state version of) the

pricing condition (24), which is the relevant pricing condition for both Nash and fair bargaining

(because, recall again, both bargaining schemes deliver the same outcome when there is no cost of

price adjustment, which is true in the steady-state of all our models). Again assuming c = 1 and

after also using the steady-state version of the advertising condition, we can express the steady-state

pricing condition as

p = (1− η)
(
ũ(1)
λ

)
+ η(mc− γθ), (38)

where we have used the fact that in steady state, ω = η. The first term on the right-hand-side of

this expression, because it itself depends on θ in general equilibrium (because the marginal utility

of wealth λ is a general equilibrium object), makes analyzing this expression prohibitively more
18In constructing Figures 1 and 2, we use the parameter values described in Section 4.1.
19In a different notion of “consumer search” (one in which search means that consumers explicitly face a distribution

of prices from which to choose), Alessandria (2005) makes the very similar point that search costs are reflected in

prices.
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complicated than analyzing the steady-state advertising condition. To focus ideas, though, suppose

it were simply a constant, A. In that case, we have the very simple pricing equation

p = (1− η)A+ η(mc− γθ), (39)

which states that the price lies inside an interval bounded above by the firm’s production cost net

of savings on search costs and bounded below by the household’s utility of consumption A. The

convex weights are simply the Nash bargaining weights.20 The locus (39) is downward-sloping in

(p, θ) space, as illustrated in Figure 1; the steady-state equilibrium (p, θ) is determined where it

and the pricing condition cross in Figure 1.

Conditions (37) and (39) characterize (p, θ) in terms of deep parameters. It is fairly straight-

forward to show (we provide the details in Appendix D) that the steady-state price is strictly

decreasing in customer bargaining power η. This result makes a lot of intuitive sense: the more

bargaining power customers wield, the less rents the firm can extract out of the match surplus,

meaning the smaller is the markup of unit price over unit marginal production cost.

So far, we have characterized the equilibrium pair (p, θ). To complete the description of the

steady-state equilibrium core of our model, it remains to characterize s (or, equivalently, a, because

θ ≡ a/s) for a given (p, θ). To do this, we begin by noting that in a steady-state equilibrium, the flow

of individuals from search into customer relationships equals the flow of individuals from customer

relationships (gone sour) back into search. Equating these flows, kh(θ)s = ρxN = ρx(1 − s).21

Rearranging,

s =
ρx

ρx + kh(θ)
. (40)

Cobb-Douglas matching implies kh(θ) = θkf (θ) = θ1−ξ. In (a, s) space, then, the flow condi-

tion (40), which characterizes activity on the household side of the goods market, defines the

downward-sloping locus shown in Figure 2.

Finally, to describe equilibrium in (a, s) space, we need a description of activity on the firm

side of the goods market; such adescription comes from combining (37) and (39). Specifically,

solving (37) for p, substituting in (39), and using the implicit function theorem to compute the

slope of a with respect to s (we again relegate the details to Appendix D), we can show that

the resulting form of the advertising condition is the upward-sloping ray in (a, s) space shown

in Figure 2; the steady-state equilibrium (a, s) is determined where it and the locus (40) cross
20Once again, to those familiar with the modern theory of labor markets, this is all very familiar. Indeed, as we

pointed out at the outset, our steady-state analysis is parallel to the analysis of the basic labor search model in

Pissarides (2000, Chapter 1).
21Here it is critical that it is only searching and shopping that are the two possible activities for individuals,

meaning s + N = 1. If individuals could also work/take leisure and work/leisure were a possible state to transit to

after a failed customer experience, it would be much more difficult to conduct the ensuing analysis.
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in Figure 2. In combination, then, Figures 1 and 2 fully characterize the steady-state (partial)

equilibrium triple (p, θ, a) that describes goods-market trade.

4 Quantitative Results in Baseline Model

With these analytics in mind, we turn to characterizing the full deterministic steady state of our

model numerically (i.e., fully endogenizing ũ/λ by re-introducing elastic labor supply). We begin

by describing the calibration we use.

4.1 Calibration

For instantaneous utility, we choose the common functional forms

u(x) = log x, (41)

v(y) = log y, (42)

and

g(z) =
ζ

1− ν
z1−ν . (43)

The time unit of our model is meant to be one quarter, so we set β = 0.99, in line with an average

annual real interest rate of about four percent. We fix the curvature parameter for the subutility

function over leisure to ν = 0.4. We set the preference parameter ϑ = 1 as a baseline. With this

baseline setting and given the rest of the calibration described below, the fraction of equilibrium

total consumption that is comprised of consumption obtained through search is 43 percent. That

is, ϑ = 1 delivers Nc
Nc+x = 0.43, which does not seem unreasonable. Varying ϑ varies this share;

in the limit, of course, ϑ = 0 collapses our model to one in which all goods are exchanged via

Walrasian trade.

As we mentioned earlier, we choose a Cobb-Douglas specification for the matching function,

m(s, a) = ψsξsa1−ξs , (44)

and set the elasticity to ξs = 0.5. We choose Cobb-Douglas because of its convenient properties —

in particular, the fact that matching probabilities depend only on goods-market tightness θ ≡ a/s,

as we already mentioned — but recognize that it would be desirable to test how empirically useful

the Cobb-Douglas description is for goods-market frictions.22 For the Nash bargaining weight η,

we choose a middle-of-the-road calibration η = 0.50 for most of the results we report, but do vary it

in some of our experiments. One virtue of setting η = ξs, well-known to search theorists, is that, as
22Petrongolo and Pissarides (2001) survey the empirical usefulness of Cobb-Douglas matching for labor markets.
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Hosios (1990) first showed in the context of labor search models, the underlying search equilibrium

is socially efficient. We of course do not know if an efficient search equilibrium in the goods market

is the best description of the data, but it seems useful as a starting point.

We calibrate a number of other parameters in the version of our model in which there are zero

costs of price adjustment (κ = 0). In this flexible-price version of our model, we set ζ = 4.3 so that

the household spends 30 percent of its time working (equivalently, the household sends 30 percent

of its family members to work) and then hold this value fixed as we move to other versions of our

model. We also calibrate γ, c̄, and ψ, all of which we discuss in more detail immediately below,

in the zero-menu-cost version of our model and hold the resulting values constant throughout all

versions of our model.

Two novel properties of our model about which we can obtain some empirical evidence are the

amount of time consumers spend shopping and firms’ expenditures on advertising. According to the

American Time Use Survey (ATUS), conducted annually by the U.S. Bureau of Labor Statistics,

the average American consumer spends just under one hour per day shopping, which is roughly

one-fourth as much time spent working.23 The questionnaire that is the basis for the survey does

not distinguish between, in the terminology of our model, “searching” for goods and “shopping”

for goods. Thus, we calibrate our model so that, in the deterministic steady state, (N +s)/l = 0.25

and allow the model to endogenously determine N and s separately. Hitting this target requires

setting the intensive quantity traded in a customer relationship to c̄ = 1.4.

Regarding advertising expenditures, we use data from the BLS and Universal McCann, an

advertising agency that tracks and projects developments in the industry.24 According to these

data, total nominal advertising expenditures in the U.S. in 2005 were about $276 billion and are

estimated to have been about $290 billion in 2006, putting the share of advertising in total nominal

GDP around 2.25 percent. This figure strikes us as non-neglible: firm spend quite a lot attracting

and retaining customers. Going back to 1950, this share has generally fluctuated within the range

2 percent to 2.5 percent. Because the notion of advertising in our model is likely a bit more general

than activities typically expensed as advertising, we use the upper limit of 2.5 percent as our

guidepost.25 We thus calibrate γ so that γa in our model is 2.5 percent of GDP in steady state. In

Appendix F, we provide for interested researchers annual aggregate advertising data.

Unfortunately, neither the shopping data nor the advertising data gives us any guidance (at

least not that we have been able to discern) about how to calibrate our model’s matching and

separation probabilities. Lacking solid evidence, we calibrate the matching function parameter ψ
23Data on the American Time Use Survey, which began in 2003, can be accessed at http://www.bls.gov/tus/.
24A summary of the data through 2005 can be found in the BLS’s 2007 Statistical Abstract of the United States,

Table 1261.
25In our model, any activity that potentially helps a firm attract customers is “advertising.”
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in the flexible-price version of our model so that kh = 0.4. The resulting value is ψ = 0.45, which

we hold fixed as we move to other versions of our model. We simply set the parameter that governs

the breakup of a customer relationship at ρx = 0.10, which states that a firm loses ten percent

of its existing customers in any given period. Equivalently, this parameter setting means that a

newly-formed customer-firm relationship is expected to last for 1/ρx = 10 periods (quarters), which

we think does not seem implausible.

We also face a problem in terms of calibrating the price-adjustment parameter κ. Ideally, we

would like to set it so that in the deterministic steady state, resources devoted to price adjustment

absorb some empirically-relevant portion of output. However, because all prices are real in our

model, price-adjustment costs are always zero in any deterministic steady state, making κ irrelevant

for the steady state. Hence, we report results for several values of κ, corresponding to no, small,

moderate, and large menu costs. We think this strategy is sufficient because the main results we

wish to convey are conceptual rather than quantitative.

Finally, the exogenous TFP process follows an AR(1) in logs,

log zt+1 = ρz log zt + εzt+1, (45)

with εz ∼ iidN(0, σz). We choose ρz = 0.95 and σz = 0.007 in keeping with the RBC literature —

see, for example, King and Rebelo (1999, p. 955). As our results show, this setting for the volatility

of the shock to TFP delivers volatility of total output in our model of about 1.6 percent, in line

with empirical evidence. Thus, the amplification of TFP shocks to GDP fluctuations in our model

is no different than in a standard RBC model.

4.2 Steady State Numerical Results

Steady-state prices and quantities are reported in Table 1 for our baseline calibration. At our

benchmark value η = 0.50, the markup in the search goods sector is just above eight percent, in

line with empirical evidence and with the settings for product-market markups employed by many

quantitative macroeconomic models.

The basic motivation of our work is that customer bargaining power may be important in pricing

(and other) decisions. As such, one would want to know the predictions of our framework regarding

key endogenous variables as customer bargaining power changes. Figure 4 illustrates how a number

of steady-state variables vary with customer bargaining power η regardless of whether or not there

are menu costs of price adjustment. The results in Figure 4 are invariant to both the menu cost

parameter κ and the specific bargaining protocol because in the steady state, π = 1 (i.e., prices are

unchanging) because the interesting price in our model is a real price — in the steady state, real

prices are of course constant.
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As shown in Figure 4, an increase in consumer bargaining power depresses the bargained price

(the top left panel), confirming our analytical results. Because marginal production cost is constant

at unity by construction, the markup declines as η rises, as well. A lower price leaves the household

with a larger gain M − S from forming a match (the top right panel), which also induces it to

put more effort into search. The firm, on the other hand, loses from a rise in η, as the fall in

A shows. The firm reduces its advertising because lower prices eat directly into profits, making

customer relationships less valuable to it. With lower a and higher s, market thickness θ (≡ a/s)

unambiguously falls.

Regarding the flow of new relationships formed, the reduction in advertising expenditures dom-

inates the increase in search activity, and the number of customer-firm relationships (N) falls. For

our calibration, even though s rises, the total amount of time that households spend engaged in

shopping-related activities (N+s) declines. Households optimally reallocate this additional time be-

tween labor and leisure according to the consumption-leisure optimality condition (expression (6)),

and it turns out that total labor declines, which, in turn, leads to lower total output.

The latter result highlights an interesting point of contrast with the standard Dixit-Stiglitz

model of monopolistic competition. In the standard model, reducing the degree of firms’ pricing

power (in the form of a higher elasticity of demand for its output) pushes price closer to marginal

cost, causing output to rise. Figure 4 shows that in our model, reducing firms’ pricing power

(here, in the form of lower bargaining power for the firm) causes households to devote less time to

production activities and enjoy more leisure, causing output to decline.

The reason for the difference in the response of output as the markup of price over marginal cost

falls is of course a direct result of the non-Walrasian features of our model. Advertising activities

open up a supply-side channel missing in a standard model. When the firm has less to gain from

trading in the non-Walrasian market, it simply chooses to reduce its activity there by cutting

back on advertising. The resulting number of transactions in the non-Walrasian market declines.

Shopping becomes less of a burden for households, who enjoy more leisure and devote less time to

production activities.26

4.3 Dynamics

To study dynamics, we approximate our model by linearizing in levels the equilibrium conditions

of the model around the non-stochastic steady-state. Our numerical method is our own implemen-

tation of the perturbation algorithm described by Schmitt-Grohe and Uribe (2004b). We conduct
26One way to interpret this is that firms can indirectly manage labor demand through the non-Walrasian market.

By changing advertising behavior, the firm can influence the number of long-term relationships in the economy and,

hence the amount of time households spend in shopping activities. Shopping time, in turn, is closely linked to the

household labor supply decision.
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5000 simulations, each 100 periods long. For each simulation, we compute first and second moments

and report the medians of these moments across the 5000 simulations. To make the comparisons

meaningful as we vary model parameters, the same realizations for productivity shocks are used

across versions of our model. Because by construction marginal production cost is always mct = 1

in our model, we will speak interchangeably about the dynamics of prices and markups. Depending

on the issue at hand, one or the other language will typically be more convenient to use, which we

think is clear in the ensuing discussion.

4.3.1 Nash Bargaining with No Menu Costs

Table 2 presents simulation-based first and second moments for key variables under Nash bargaining

and zero menu costs. Examining basic business cycle statistics reveals that the search goods market

is a source of consumption smoothing, in the sense that the volatility of total consumption is

lower than the volatility of GDP.27 In our model, total consumption is Nc + x. The volatility of

total search consumption Nc, at 1.13 percentage points, is noticeably lower than the volatility of

Walrasian consumption x. In our baseline calibration, search consumption makes up 43 percent of

total consumption in the steady-state Nc+ x. The volatility of total consumption, at 1.55 percent

(not shown in the table), is thus a bit lower than volatility of total output. The consumption

smoothing, although obviously not as quantitatively strong as in an RBC model with capital,

arises because active customer-firm relationships are a state variable in our environment, making

part of total consumption pre-determined. At roughly 0.94% ( = 1.55/1.66), the relative volatility

of aggregate consumption in our model is clearly not as low as that which obtains in an RBC model

with capital (see, for example, Table 3 in King and Rebelo (1999, p. 957)). Thus, we are clearly

not claiming that search consumption induces as quantitatively strong a smoothing effect as does

capital. The fact that consumption smoothing can arise in a model with completely perishable

goods and no capital, though, is novel.

Nevertheless, in terms of developing intuition for the basic dynamics of the model, we find

it useful to think of the formation of customer-firm relationships as an investment decision for

participants on both sides of the market. Households invest time searching for retailers, and firms

invest advertising dollars in order to attract shoppers. A comparison of the volatility of advertising

expenditures in our model to the volatility of investment in a standard RBC model with capital

supports this analogy. We have more to say about the business cycle properties of advertising

expenditures below.

The final point worth emphasizing is that even with flexible prices, our model delivers a time-
27Trivially, in a model with no search markets and in which labor is the only production input, the volatility of

GDP would be identical to the volatility of consumption simply because all output is absorbed by consumption.
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varying markup, a result that is of some interest on its own. Our baseline model predicts that

markups are procyclical, as the fifth column in Table 2 documents. However, most empirical

evidence — for example, Rotemberg and Woodford (1999) or, more recently, Jaimovich (2006) —

suggests that markups are countercyclical. We do not view this as a shortcoming of our model for

two reasons. First, our basic goal was not to model markup behavior per se. Second, our baseline

model features only TFP shocks. Our reading of the empirical evidence is that it is not even clear

whether countercyclicality of markups observed in the data is due to demand shocks or supply

shocks. In Section 6, we briefly extend our model to include demand shocks and demonstrate that

our model is in fact capable of delivering countercyclical markups.

4.3.2 Nash Bargaining with Menu Costs

We now turn on menu costs. Table 3 presents simulation-based first and second moments for key

variables under Nash bargaining and for several values of κ. Comparing results across models,

one feature that stands out is that the volatility and correlation properties of the typical quantity

variables GDP, (Walrasian) consumption x, and time spent working l are virtually invariant to the

size of the menu cost κ. The same is true of the correlation and volatility properties of time spent

shopping N and time spent searching s. Quantity variables as a whole are thus largely unaffected

by the magnitude of menu costs. An exception is goods-market tightness θ, which becomes a bit

less volatile as κ rises. Because, as we just noted, the volatility of s changes little with κ, changes

in the volatility of θ are driven by fluctuations in firms’ incentives to advertise. We document and

discuss this latter feature of our model further at the close of this section.

With most quantity variables largely unaffected by the degree of price rigidity, then, we focus

most of the rest of our discussion on the dynamics of prices (equivalently, markups) and effective

bargaining power. As Table 2 shows, with zero costs of price adjustment, effective bargaining power

is constant over the business cycle at ωt = η. We pointed out in Section 2.4.1 that this must be the

case with no costs of price adjustment, and Appendix B proves this. Nevertheless, prices, and hence

markups, do vary. Recall that for the case κ = 0, the Nash pricing condition can be expressed as

in (25), which makes clear that in general prices vary over time despite constant effective bargaining

power because the marginal utility of wealth λt and aggregate goods-market tightness θt are both

time-varying.

As Table 3 shows, prices (markups) become more volatile and more persistent as κ rises, mir-

roring what happens to customers’ effective bargaining power ωt. In fact, ωt and pt are negatively

correlated over the business cycle: their mean correlation across simulations is -0.11 with κ = 5,

-0.64 with κ = 20, -0.79 with κ = 50, and -0.81 with κ = 100. Figure 5 provides more evidence

of this phenomenon. We think this result is quite easy to understand: at times when consumers’
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effective bargaining power is low, firms are more likely to be to able to push through higher prices.

The relationship holds in the opposite direction as well, of course: at times when consumers’ effec-

tive bargaining power is high, firms must lower their profit margins. Our model predicts that such

phenomena hold at a business-cycle frequency, perhaps opening a new way to empirically thinking

about how and why markups change over time. Regardless of the ability to empirically test this

idea with currently available data, eliminating the phenomenon that prices are higher the lower is

consumers’ bargaining power (and vice-versa) is precisely the goal of the fair-bargaining norm that

we examine below.

Finally, we noted above that firms’ incentives to advertise fluctuate over time. Changes in these

incentives are reflected in shifts of the firm advertising condition, the steady-state version of which,

recall, is the downward-sloping locus in Figure 1. In Figure 6, we scatter the dynamic realizations

of (θ, p) for a representative simulation with κ = 0. Comparing the results with Figure 1, clearly

both the advertising condition and the Nash pricing condition shift over the business cycle, but

shifts in the advertising condition dominate because the resulting scatter is upward-sloping. This

result carries over to the environment with positive menu costs, as the comparable results presented

in Figure 7 show. For brevity, we omit plotting the dynamic realizations of (a, s) in the space of

Figure 2, which all show that it is dynamic shifts in the flow condition (40) that dominate. The

reason that a fluctuates so much more than s is that firm profits are linear in a, while household

utility displays diminishing returns in leisure (which depends on s). All else equal, the household

has an incentive to limit fluctuations in its search activity in a way that firms do not.

Whether in the face of zero menu costs (Table 2) or positive menu costs (Table 3), the standard

deviation of advertising, at over 4 percent, lines up well with the cyclical volatility of advertising

behavior in the U.S. economy. In Appendix F, we present data and summary statistics for U.S.

aggregate advertising. The cyclical volatility of advertising over the past 50 years is 4.2 percent,

and its contemporaneous correlation with GDP is 0.73; our model predictions are quite close to

these. We did not set out to match advertising dynamics per se, but the fact that our basic model

matches quite well the volatility and correlation of advertising behavior means that it is not subject

to the same critique Shimer (2005) leveled at labor search models.28

28Specifically, in work that has sparked much subsequent modeling effort, Shimer (2005) demonstrated that the

standard Mortensen-Pissarides structure coupled with Nash bargaining fails to match the volatilities of unemployment

and vacancies, the two inputs to the aggregate matching function, observed in the data. Our model employs a

Mortensen-Pissarides structure coupled with Nash bargaining, yet at least one of the inputs to the aggregate matching

function — advertising — is as volatile as observed in the data. Regarding the volatility of the other input to the

matching function — household search behavior — the American Time Use Survey only began in 2003, so we cannot

compute meaningful time-series summary statistics for it. We can only note that over the four years of its survey,

household time spent shopping has been remarkably stable, which also qualitatively matches our model’s prediction

regarding the volatility of N and s.
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In summary, regardless of the presence of menu costs, the dynamics of prices and quantities

are largely divorced from each other in the search goods market. The price p plays much more

of a distributive role (determining how the surplus in a customer relationship is split) than the

purely allocative role it plays in standard Walrasian views of goods markets. This point is made

quite clearly in Figure 8, which shows impulse responses to a one-time, persistent TFP shock for

κ = 0 and κ = 20. Output dynamics are essentially identical (the two responses in the top panel

of Figure 8 lie virtually on top of each other) despite large differences in price dynamics.

Because the price plays a distributive role, our model seems ideally suited to study notions of

fairness in pricing. With some understanding of the dynamic results under Nash bargaining in

hand, we thus turn next to dynamics under our two fairness schemes, proportional bargaining and

fair bargaining. We again point out that these fairness schemes are only relevant in the presence of

menu costs (κ > 0) because, as we discussed in Section 2.4, all three bargaining schemes collapse

to standard Nash bargaining, both in steady state and dynamically, if κ = 0.

4.3.3 Proportional Bargaining

The proportional-bargaining price always solves (27), which is identical to the Nash sharing con-

dition (22) when ωt = η, which occurs, recall, if κ = 0. Thus, no matter the magnitude of κ, all

dynamics under proportional bargaining, both those of prices and quantities, are identical to the

dynamics under Nash bargaining and κ = 0 reported in Table 2. The way in which fairness is

captured by proportional bargaining thus renders menu costs completely irrelevant.

To understand this, recall from the analysis of the results under Nash bargaining and posi-

tive menu costs that the primary channel through which menu costs affected price dynamics was

through time-variation in effective bargaining power ωt. In proportional bargaining, in contrast,

there is no notion of “bargaining power” — indeed, this is what we mean when we say that propor-

tional bargaining lacks clear strategic foundations. In proportional bargaining, parties’ adherence

to the ad-hoc rule that splits the surplus according to fixed shares no matter what shuts down

the transmission of menu costs to prices intermediated through effective bargaining power. As a

consequence, price dynamics are governed entirely by the dynamics of the underlying surplus, and

any price adjustment is simply an efficient response to a shock and neutralizes the distributive role

of prices.

Finally, to square proportional bargaining with Nash bargaining in a different way and to moti-

vate fair bargaining from a quantitative perspective, we conduct the following thought experiment.

For a given value of κ and using Nash bargaining, we can construct the sequence {ωPROP
t } of

effective bargaining power that would make the Nash outcome coincide with the proportional-

bargaining outcome. In other words, {ωPROP
t } is a series we can construct residually to make
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the Nash dynamics for a given κ identical to the Nash dynamics for κ = 0. Using κ = 20, the

last row of Table 2 reports the dynamics of this counterfactual effective bargaining power series.

This residual measure of effective bargaining power is much more volatile than any of the actual

effective bargaining power series reported in Table 3. In proportional bargaining, ωPROP is indeed

nothing but a residual; there is no notion of bargaining power at all in proportional bargaining.

This fact, coupled with the observation that if there were a notion of bargaining power behind

fairness it would apparently fluctuate a great deal, is part of our motivation for constructing our

fair-bargaining protocol, the results of which we now turn to.

4.3.4 Fair Bargaining

Table 4 compiles results using fair bargaining for the same set of experiments as in Table 3. The

central result here is that the presence of menu costs makes the price of the search good completely

rigid. In the discussion surrounding expression (23), we noted that ωt = η if and only if the

cost of price adjustment in period t is zero. The menu cost can be zero either because κ = 0

or because pt = pt−1. Under fair bargaining, the customer and firm are constrained to share the

surplus according to ωt = η ∀t. With κ > 0, the only way this sharing norm can be achieved is

if prices never vary. One way of understanding this result is that the “fairness constraint” on the

Nash bargaining problem effectively eliminates the efficient adjustment of the price that obtains

under proportional bargaining. Echoing the result under proportional bargaining, however, the

magnitude of menu costs (here, as long as they are positive) is irrelevant for price, as well as

quantity, dynamics.

However, it is not a theorem that would hold in any goods-search model of the type we propose

that fair bargaining necessarily requires complete price stability. With the features present in our

model, it is only time-variation of prices that create a wedge between η and ωt. One can easily

extend our model to include other features that would affect this wedge. For example, in Arseneau

and Chugh (2007), time-varying labor taxes also induce such a wedge (albeit in a model of wage

bargaining, but we think the idea would translate readily to our environment). Suppose exogenous

tax movements and (endogenous) price movements were both present in our model. In such an

environment, there may be situations in which variations in the two offset each other in such a

way as to leave no wedge at all between η and ωt. Indeed, the fair-bargaining norm may require

customers and firms to engineer price movements in precisely the right way to offset exogenous

tax shifts. We have not conducted such experiments with our model and so cannot assert this

definitively, but based on our work here and the results and intuition in Arseneau and Chugh

(2007), this hypothesis seems sound.

Quantity dynamics, which are also invariant to κ, are very nearly, but not completely, identical
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to the flexible-price Nash baseline. The most obvious difference is in the volatility of goods-market

tightness θ. Its standard deviation of about 1.2 percent in Table 4 is roughly half that of all the

results under Nash bargaining displayed in Tables 2 and 3. Because the volatility of s is virtually

the same across models, the smaller fluctuations in θ under fair bargaining must be due to smaller

fluctuations in a. To verify this conjecture, we plot in Figure 9 the dynamic realizations of the pairs

(θ, p) and (a, s) for a representative simulation.29 The reason that advertising does not fluctuate as

much under fair bargaining is simple: because p does not fluctuate, a firm’s incentives to advertise

do not vary nearly as much as they do under Nash bargaining. With the return to advertising thus

much less variable over time, actual advertising is less variable as well.

Related to a point we made earlier, we do not need to take literally the idea that customers and

firms calculate deviations of ω from η and use that to inform what prices they consider acceptable.

Our model is obviously a metaphor for more subjective forces underlying the kinds of evidence that

Blinder et al (1998) and others tabulate that suggest that avoiding customer anger is often a major

concern of firms when determining prices.

4.3.5 Customer Bargaining Power and Price Volatility

In the dynamic results so far, we have focused on the case η = ξs, which corresponds to the Hosios

(1990) parameterization. In our model with Nash bargaining, even though effective bargaining

power ωt generally is different from η along the business cycle, in the long-run (i.e., in steady-

state), ω = η. Thus, using the Hosios setting implies that customers’ long-run bargaining power is

such that the underlying search equilibrium is efficient, which is a useful benchmark.

Of course, long-run bargaining power may not satisfy the Hosios condition. A basic goal of our

study is to shed some light on the consequences of bargaining and bargaining power for pricing

outcomes. We need not limit ourselves to short-run changes in bargaining power; we can also easily

investigate how changes in long-run bargaining power affect pricing. We thus repeat our basic

experiments for alternative values of long-run customer bargaining power η. Table 5 reports results

for Nash bargaining (the issue at hand here is moot with fair bargaining because fair bargaining

renders prices constant), fixing κ = 0, using a lower setting for customer bargaining power (η = 0.20)

and a higher setting for customer bargaining power (η = 0.50) (the middle panel repeats results

from the top panel of Table 2).

As the results make apparent, the means, volatilities, and correlations of almost all variables

change little as we vary long-run bargaining power. The exception, though, is prices (equivalently,

the markup): the standard deviation of prices in the search goods sector falls about four-fold as

long-run customer bargaining power rises from η = 0.20 to η = 0.80. Thus, not only does higher
29The setting for κ does not matter here because equilibrium dynamics are invariant to κ.
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average customer bargaining power lower the average markup (from 15 percent to less than 5

percent in Table 5), it lowers its volatility as well. To demonstrate this point a bit further, we

plot in Figure 10 the mean volatility of prices across simulations for a wide range of values of

η and for several values of κ.30 The rate at which price volatility declines as long-run customer

bargaining power rises is larger the higher is κ. Figure 10 thus illustrates two implications of our

model that may be testable using time-series data on, say, sectoral-level prices: the relationship

between volatility of prices and the fraction of repeat customers (which may serve as a proxy for

average customer bargaining power), and how this relationship changes with the importance of

pure menu costs in that sector. Such empirical investigation is left for future work. The main point

that emerges from our experiments here, though, is that average bargaining power has implications

not only for average prices (as illustrated in Figure 4) but also for price volatility.

5 Intensive Quantity Adjustment

In order to highlight the consequences of the formation and dissolution of customer relationships,

we have so far limited fluctuations in consumption of search goods to fluctuations at the extensive

margin (fluctuations in N). In goods markets, it is natural to think that fluctuations also occur at

the intensive margin, the quantity traded per transaction; indeed, this is the only margin at which

fluctuations occur in standard models. We now relax the assumption in our baseline model that

cit = c̄ in every trade i and instead endogenize c.

In order to open up the intensive margin of adjustment, we modify one feature of our baseline

model. In our baseline model, the aggregator over search goods over which subutility v(.) is defined

is linear in the number of goods obtained, y =
∫N
0 cidi. In a symmetric equilibrium, y = Nc,

which makes clear that from the point of view of just preferences, the household does not care

whether a given amount of total search consumption comes from many matches, each with a small

per-match quantity, or a small number of matches, each with a large per-match quantity. From a

cost perspective, however, the latter is cheaper than the former because finding and engaging in

many customer relationships takes time. Thus, were we to stick with the formulation of y we have

used thus far as we endogenize c, the number of matches would be driven very low and quantity

traded per match would be very large. This poses both a conceptual and a quantitative problem.

Conceptually, our model is meant to be one in which consumers “must” engage in search and

shopping to obtain goods; a model in which N and s are extremely small and c extremely large

goes against this spirit. The agents in our model would cleverly circumvent the frictions we have

placed in their way. Quantitatively, it could easily be the case that we would need to employ an
30The experiments we conduct in this section of course would be trivial under fair bargaining because prices never

change under fair bargaining.
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incentive-compatibility constraint in the baseline model to ensure that firms would actually want

to participate in such an equilibrium because if a given customer is able to bargain a large c, price

could easily be driven below marginal production cost, in which case it of course does not make

sense for firms to want to engage in advertising to find customers in the first place.31

To sidestep such conceptual and quantitative issues, we modify the aggregator inside v(.) to be

a CES composite of the goods obtained from distinct matches,

yt =

[∫ Nt

0
cρit

]1/ρ

, (46)

with ρ < 1, which indicates that households have a preference for obtaining consumption from

different matches. With sufficiently diminishing returns to consumption at the intensive margin,

N will not be driven too low. Aside from the reasons we have already mentioned, introducing such

diminishing returns to intensive consumption may be natural in its own right. For example, were

sweaters to never carry labels, two sweaters from Banana Republic may be completely indistin-

guishable from two sweaters from JCrew. With labels, however, it is plausible that a household may

desire one sweater from Banana Republic and one sweater from JCrew. This type of preference

idea often goes under the name “preference for variety,” and the label, so to speak, applies well

enough to our idea here, as well.32 Finally, note that in a symmetric equilibrium, y = cN1/ρ.

We briefly describe the main modifications to the baseline model of Section 2 and leave most

details to Appendix B and C. In principle, the modifications to the model are simple: in addition to

the introduction of curvature in the consumption aggregator, c̄ from the baseline model is replaced

by ct in all equilibrium conditions, and we must describe the protocol by which quantity traded
31A bit more precisely, we tried, holding fixed the calibration in our baseline model, endogenizing c (using the

mechanisms described below) with the linear aggregator and indeed found that firms need to be subsidized (i.e.,

γ < 0) to be induced to advertise and produce for customers (and the resulting equilibrium featured p < mc). It

could be the case that for some other constellation of parameters of our baseline model, this would not occur, but we

did not find one. Assuming that such a parameter constellation does not exist or that such a parameter constellation

is unrealistic on other grounds, one would need to impose a constraint that would guarantee that firms enjoy non-

negative profits from paying for advertising. Because this entry decision occurs every period, such a constraint would

in principle be an occasionally-binding constraint, which would require quite different numerical tools than we use to

solve the model and would likely be difficult to implement in any case due to the size of our model.
32We could also call this formulation “differentiation” of products, as is typical in models that use this type of

consumption aggregator. We hesitate to use this terminology, though, because what we have in mind is not an ex-ante

notion of differentiation, but rather an ex-post notion of differentiation. To continue with the example, what we have

in mind is that at a primitive level the household does not care whether it finds sweaters at Banana Republic or

JCrew or does not even care whether it obtains either at all. More subtly, given that one sweater has been purchased

from Banana Republic, in our formulation the household would prefer if the second sweater were purchased from

JCrew. In the end, however, this is a somewhat semantic point, and if one wants to call this formulation of our model

one in which there is differentiation of goods, we do not strongly object.
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in a customer relationship is determined. We assume that the customer and firm bargain (either

Nash-bargain or fair-bargain) simultaneously over price and quantity.

5.1 Households

Discounted household utility is now

E0

∞∑
t=0

βt

u(xt) + ϑv

[∫ Nh
t

0
cρitdi

] 1
ρ

+ g(1− lt − st −Nh
t )

 , (47)

and in the flow budget constraint (2), we simply replace c̄ by cit. Because the household takes

as given cit in its unilateral utility maximization problem, all household first-order conditions are

identical to those in the baseline model, with appropriate replacement of c̄ by cit. For example, in

a symmetric equilibrium, the shopping condition is now

g′t
kh(θt)

= β(1− ρx)Et

{
ct+1

[
ϑv′t+1 − pt+1u

′(xt+1)
]
− g′t+1 +

g′t+1

kh(θt+1)

}
. (48)

5.2 Firms

Walrasian firms are no different than in our baseline model. Search firms are also no different,

except that in the profit-maximization problem c̄ is replaced by cit, which has the consequence that

ct+1 appears in the period-t advertising condition,

γ

kf (θt)
= (1− ρx)Et

{
Ξt+1|t

[
pt+1ct+1 −mct+1ct+1 −

κ

2

(
pt+1

pt
− 1

)2

+
γ

kf (θt+1)

]}
. (49)

Just as households do, search firms take cit as given in their unilateral optimzation problem.

5.3 Price and Quantity Determination

We extend both Nash bargaining and fair bargaining to now include simulataneous bargaining over

(pit, cit).

5.3.1 Nash Bargaining

In simultaneous Nash bargaining over (pit, cit), the customer and firm continue to maximize the

Nash product (21). The bargained price continues to satisfy condition (24), with appropriate

replacement of c̄ by cit. The bargained quantity cit solves a condition that takes a similar form,

øt

1− øt

[
pitcit −mctcit −

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(cit)
λt

− pitcit+ (50)

+ (1− θtk
f (θt))Et

[
Ξt+1|t

(
øt+1

1− øt+1

)
(1− ρx)

[
pit+1cit+1 −mct+1cit+1 −

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
,
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except with bargaining weights øt and 1−øt, and øt 6= ωt. The main conceptual difference between

øt and ωt is that the former depends on ũ′(cit) whereas the latter does not. If κ = 0, a more

convenient characterization of the solution for the quantity traded is available. With κ = 0, cit

satisfies
g′t

ũ′(cit)
= zt. (51)

Further details are provided in Appendix B and Appendix E.

5.3.2 Proportional Bargaining

As we know from the presentation and discussion of proportional bargaining in the baseline model,

the outcome replicates that of Nash bargaining with κ = 0. The irrelevance of menu costs under

proportional bargaining thus readily extends to simultaneous bargaining over price and quantity.

5.3.3 Fair Bargaining

Simultaneous fair bargaining over price and quantity means that the customer and firm choose

(pit, cit) to maximize (Mt − St)ηAt
1−η subject to the constant-split rule (1− η)(Mt − St) = ηAt.

Price continues to be characterized by (30), while the quantity satisfies

g′t
ũ′(cit)

= zt, (52)

exactly as in the Nash case with κ = 0. Thus, fair bargaining, in eliminating the wedge in price-

bargaining, also eliminates the wedge in quantity-bargaining. Further details appear in Appendix C

and Appendix E.

5.4 Equilibrium

The variables and conditions defining a symmetric search equilibrium are the same as in Section 2.7

(with appropriate replacement of c̄ by ct), with the addition of ct as an endogenous stochastic process

and, depending on whether we are using Nash bargaining or fair bargaining, either condition (50)

or (52) to pin down quantity traded.

5.5 Quantitative Results

5.5.1 Parameterization

The functional forms we use are the same as in the baseline model, and, as we already discussed, we

use the aggregator
[∫Nt

0 cρit

] 1
ρ inside the subutility function v(.). We keep all parameter settings fixed

at their values in the baseline model to try to achieve some comparability. However, the models

are not readily comparable because we also must choose ρ < 1; by thus changing a structural
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parameter of the economy relative to the baseline economy, cross-model comparisons inherently

become difficult to interpret. In our setting for ρ, we choose to make the steady-state markup the

same as in the baseline model when η = 0.50. Setting ρ = 0.19 delivers a gross markup of 1.0835

here, identical to that in the baseline calibration of the model of Section 2.

5.5.2 Steady State

Steady-state prices and quantities are reported in Table 6 for the model with intensive adjustment.

Comparing with Table 1, the main difference is that the fraction of time spent in shopping-related

activities is much higher. Both the number of active customer relationships and time spent searching

are much higher. Larger N reflects the curvature we introduced in the search goods aggregator,

which, as we discussed at the start of this section, gives households a preference for obtaining

consumption from many matches. Absent some other counteracting feature of the environment,

this version of our model thus cannot account for the time-use evidence that shows (N+s)/l = 0.25.

Because relationships occasionally dissolve, households must also search more in order to maintain

the larger N , explaining the higher level of s in the model here compared to the baseline model.

Figure 11 illustrates how key steady-state variables change with customer bargaining power η.

As the middle left panel shows, the extensive quantity N falls, as it did in Figure 4; the difference

here is that the intensive quantity c simultaneously rises the larger is η. This substitution reflects

the fact that with higher η, households know they can leverage a higher quantity out of each

customer relationship. Given that match formation is costly, it makes sense for the household to

essentially substitute out of extensive consumption and into intensive consumption. The levels and

responses of all other variables are very similar to those in Figure 4, so we do not discuss them

further.

5.5.3 Dynamics

Tables 7 and 8 catalog results for the same set of dynamic experiments we conducted in Section 4.3;

endogenizing the intensive quantity does not change the main quantitative results presented there.

A few new notable results do arise, though. First, endogenizing the intensive quantity imparts

more persistence to household search behavior. Second, as shown in Tables 2, 3, and 4, with

fixed c̄, search activity is weakly procyclical no matter the bargaining protocol. In contrast, with

endogenous intensive quantity, the cyclicality of s depends crucially on the bargaining protocol in

place. In turn, the cyclicality of search mirrors the cyclicality of the intensive quantity c.

With Nash bargaining, c is always countercyclical with respect to total GDP. This result is

the dynamic manifestation of the substitution between N and c just discussed above: because

of the “preference for variety” in this version of the model, all else equal, the household prefers
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that expansions in search consumption come at the extensive margin rather than at the intensive

margin. It is also striking how much less volatile c is than N is: between five- and six-fold less

volatile depending on the value of κ. A standard model’s notion of consumption-smoothing is thus

pushed down to the level of intensive consumption in this version of our model. We think this makes

sense because it is intensive consumption that is essentially governed by a MRS-type of optimality

condition; this can be seen most clearly in condition (51), which is also the core of condition (50).

As in the baseline model without intensive adjustment, the proportional bargaining outcome,

no matter the value of κ, is identical to the Nash outcome with κ = 0, so this notion of fairness

leaves c countercyclical. In contrast, under fair bargaining, c is procyclical with respect to total

GDP. This seems to be related to the result that the volatility of c relative to the volatility of N is

not nearly as small under fair bargaining as it is under Nash bargaining. As in the baseline model,

fair bargaining mutes the volatility of p, which in turn governs the incentives of firms to cyclically

alter their advertising behavior. With advertising not nearly as volatile as under Nash bargaining,

the equilibrium stock of active customer relationships does not fluctuate nearly as much, which in

turn means that the scope for substitution between N and c is dramatically reduced. Thus, despite

the primitive “preference for variety,” households must accept procyclical movements of c to vary

their consumption of search goods.

6 Demand Shocks

We noted in Section 4.3 that, although our basic model driven by only TFP shocks does not

deliver countercyclical markups, extending our model to allow for demand shocks can overturn this

prediction. To the extent that it is not clear whether the countercyclicality of markups observed in

the data is due predominately to demand shocks or supply shocks, we think it is useful to at least

know that our model is capable of matching this stylized fact for some shocks.

We introduce demand shocks by allowing exogenous government purchases. For the sake of

simplicity, we only conduct the experiments in this section in the baseline model with fixed c̄.

Total output is now absorbed by consumption (of both Walrasian and search goods), advertising

costs, price adjustment costs, and government spending, so the resource constraint is

xt +Ntc̄+ gt + γat +
κ

2
(πt − 1)2Nt = ztlt. (53)

No other features of the baseline model of Section 2 change, hence all equilibrium conditions, with

the obvious exception of the resource constraint, are unchanged. Government spending is assumed

to follow an AR(1) in logs,

log gt+1 = (1− ρg) log ḡ + ρg log gt + εgt+1, (54)
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with εg ∼ iidN(0, σg), and the shock to government spending is uncorrelated with the shock to

TFP. We set ḡ = 0.05 so that government spending makes up about 19 percent of total output, set

ρg = 0.97, in line with Schmitt-Grohe and Uribe (2004a), and set σg so that the standard deviation

of government purchases is 6 percent of the mean level ḡ — the resulting value is σg = 0.03.

We examine the dynamics of this model in the face of just shocks to government spending. The

upper panel of Table 9 shows that with κ = 0 and Nash bargaining as the pricing mechanism,

the contemporaneous correlation of the markup with GDP is -0.32. As κ increases, however, the

correlation turns positive. So our claim is not that our model with demand shocks always predicts

a countercyclical markup, just that it can. Finally, we do not need to consider fair bargaining here

because markups are time-invariant under that protocol. We leave to future work a full investigation

of the cyclicality properties of the markup in our model.

7 Conclusion

We constructed a model in which long-lived customer relationships allow one to think about an array

of pricing schemes in goods-market transactions. Our focus here was on bargaining arrangements

between firms and customers in which fairness was of paramount concern. Depending on exactly

how our concept of fairness is operationalized, menu costs may be either completely irrelevant

for dynamics (proportional bargaining) or may lead endogenously to complete price stability (fair

bargaining). Under proportional bargaining, consumers and firms effectively share the menu costs

efficiently, making them irrelevant. Under fair bargaining, price changes are the only source of

time-variation in effective bargaining power between a firm and a customer. Avoiding this time-

variation in effective bargaining power requires ensuring price stability. As we noted, in a richer

model (one that includes, for example, labor or consumption taxes), stabilizing surplus shares need

not require complete price stability.

Understanding how pricing decisions are affected by bargaining power is an understudied topic,

at least in the context of modern quantitative macroeconomic models. Survey evidence seems to

repeatedly support the view that firms often avoid changing prices out of concern for upsetting

their existing customers. It is difficult to articulate very precisely such views in standard models

of goods markets because in the basic Walrasian framework, of course, there simply are no clear

notions of customers and bargaining. We think we have made some progress in at least pointing

out a potentially useful direction, one that is immediately tractable in modern quantitative macro-

economic models. An even deeper bargaining-theoretic explanation for price rigidity is provided

by Menzio (2007), but the tension there is that his framework seems likely not readily tractable in

standard DSGE models.

More broadly than the fair-bargaining result around which we centered much of our analysis,
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we think the general framework we developed of search-based frictions in goods markets holds the

promise of being usefully incorporated into standard quantitative macroeconomic models. Such a

line of research immediately allows one to think beyond the standard marginal pricing conditions

present in most models and therefore is likely to be useful in bringing to bear new ideas about a

host of issues in macroeconomics. As we have admitted, more work needs to be done in thinking

about the empirical counterparts of and calibration of some elements of our model. But at least

these are testable parts of our model.

It is well-understood from standard macro models that wedges between consumption-leisure

marginal rates of substitution and marginal rates of transformation must stem from frictions in

goods markets or from frictions in labor markets or both. Chari, Kehoe, and McGrattan (2006),

among others, have emphasized that understanding this (to use their terminology) “labor wedge”

is quite important for macro modeling efforts. Our model posits search frictions in product mar-

kets alongside a perfectly-competitive labor market, so the wedge between the MRS and the

consumption-leisure MRT stems from goods market frictions. Labor search models, especially their

recent DSGE incarnations, have made clear that such wedges arise from primitive labor matching

frictions as well. A model featuring labor search and goods search frictions may have even more to

offer in terms of explaining labor wedges. In addition, a nominal version of such a model, in which it

is nominal prices and nominal wages over which parties bargain, would have some potentially very

interesting things to say regarding dynamics of real wages. Hall’s (2007) model does incorporate

both goods search and labor search frictions and points out some interesting tradeoffs regarding

stabilizing goods markets versus stabilizing labor markets that monetary policy may face.

We see a great many other possible applications of our framework. One application is to asset

pricing: the fact that marginal utility of consumption is tied to consumer search frictions opens

up a new mechanism for thinking about asset prices. Another possible use for our framework is

to provide a micro-foundation behind habit-based consumption models: part of consumption is a

state variable in our model, as it is in habit-based models, because it directly reflects the number of

pre-existing customer relationships. Our framework, sufficiently enriched on the pricing/bargaining

side of the model, may also provide a different way to think about time-varying markups in goods

markets, an issue we only scratched the surface of here.

Finally, another important motivation behind the construction of our model is the eventual

design of optimal macroeconomic policy in such an environment. Arseneau and Chugh (2006,

2007) study optimal policy in the presence of deep-rooted frictions in labor markets, with all other

macro markets quite standard. Aruoba and Chugh (2006) study optimal policy in the presence

of deep-rooted frictions in money markets, with all other macro markets quite standard. Both

of these studies uncover policy channels and implications about which standard models used to
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study dynamic optimal policy are silent, and several of the policy prescriptions obtained in these

studies are indeed opposite those reached using standard frameworks. However, each of these

studies considers goods trade in more or less standard Walrasian fashion. We conjecture that

thinking about deep-rooted frictions in goods markets is likely to also yield new insights about how

macroeconomic policy ought to be conducted, a topic rising on our research horizon.
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A Tables and Figures

 

Figure 1: Steady-state firm advertising condition and Nash pricing condition.

 

Figure 2: Steady-state flow condition and firm advertising condition
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µ a s θ N Nc x gdp

1.0835 0.0151 0.0189 0.8000 0.0680 0.0952 0.1919 0.2943

Table 1: Steady-state prices and quantities under benchmark calibration.
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Figure 3: Steady-state allocation as function of customer bargaining power η.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

No menu cost, κ = 0

µ 1.0835 0.0036 0.0033 0.1751 0.5557 0.5850

gdp 0.2945 0.0049 0.0166 0.9342 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9246 0.9996 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0008 0.0113 0.9274 0.9345 0.9212

Nc 0.0954 0.0011 0.0113 0.9274 0.9345 0.9212

l 0.2945 0.0007 0.0025 0.7866 -0.9626 -0.9718

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0.0036 0.0033 0.1751 0.5557 0.5850

s 0.0189 0.0007 0.0360 0.0187 0.0885 0.1237

θ 0.7996 0.0233 0.0292 0.9209 0.9992 1.0000

ω 0.5000 0.0000 0.0000 — — —

a 0.0152 0.0007 0.0494 0.2868 0.6624 0.6878

Addendum

ωP ROP 0.5000 0.0138 0.0277 -0.3752 -0.2030 -0.1776

Table 2: Simulation-based moments in baseline model with Nash bargaining, zero menu costs, and TFP

shocks as driving force.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

Menu cost, κ = 5

µ 1.0835 0.0032 0.0030 0.8008 0.9387 0.9488

gdp 0.2945 0.0049 0.0166 0.9344 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9245 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0008 0.0113 0.9285 0.9346 0.9211

Nc 0.0954 0.0011 0.0113 0.9285 0.9346 0.9211

l 0.2945 0.0007 0.0025 0.7864 -0.9623 -0.9716

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0.0032 0.0030 0.8008 0.9387 0.9488

s 0.0189 0.0007 0.0356 0.0256 0.0940 0.1295

θ 0.7996 0.0230 0.0287 0.9227 0.9994 1.0000

ω 0.5000 0.0015 0.0031 0.1087 -0.3572 -0.3246

a 0.0152 0.0007 0.0488 0.2934 0.6642 0.6898

Menu cost, κ = 20

µ 1.0834 0.0050 0.0047 0.9775 0.9533 0.9467

gdp 0.2945 0.0049 0.0165 0.9344 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9244 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0008 0.0113 0.9293 0.9346 0.9211

Nc 0.0954 0.0011 0.0113 0.9293 0.9346 0.9211

l 0.2945 0.0007 0.0025 0.7882 -0.9627 -0.9720

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0834 0.0050 0.0047 0.9775 0.9533 0.9467

s 0.0189 0.0007 0.0353 0.0296 0.1076 0.1432

θ 0.7996 0.0221 0.0277 0.9242 0.9995 1.0000

ω 0.5000 0.0031 0.0061 0.5501 -0.4542 -0.4233

a 0.0152 0.0007 0.0481 0.2940 0.6618 0.6876

Menu cost, κ = 100

µ 1.0833 0.0093 0.0086 0.9967 0.5995 0.5909

gdp 0.2945 0.0048 0.0164 0.9344 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9244 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0008 0.0111 0.9298 0.9345 0.9210

Nc 0.0954 0.0011 0.0111 0.9298 0.9345 0.9210

l 0.2945 0.0008 0.0026 0.7967 -0.9658 -0.9747

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0833 0.0093 0.0086 0.9967 0.5995 0.5909

s 0.0189 0.0007 0.0349 0.0293 0.1570 0.1922

θ 0.7997 0.0190 0.0237 0.9256 0.9996 0.9999

ω 0.5001 0.0058 0.0117 0.8008 -0.1332 -0.1113

a 0.0152 0.0007 0.0459 0.2750 0.6429 0.6691

Table 3: Simulation-based moments in baseline model with Nash bargaining, positive menu costs, and TFP

shocks as driving force.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

Menu cost, κ = 5

µ 1.0835 0 0 — — —

gdp 0.2945 0.0048 0.0161 0.9341 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9242 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0007 0.0106 0.9299 0.9342 0.9210

Nc 0.0954 0.0010 0.0106 0.9299 0.9342 0.9210

l 0.2945 0.0009 0.0029 0.8184 -0.9737 -0.9812

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0 0 — — —

s 0.0189 0.0007 0.0346 0.0474 0.3010 0.3341

θ 0.7998 0.0098 0.0123 0.9294 0.9999 0.9998

ω 0.5000 0 0 — — —

Menu cost, κ = 20

µ 1.0835 0 0 — — —

gdp 0.2945 0.0048 0.0161 0.9341 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9242 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0007 0.0106 0.9299 0.9342 0.9210

Nc 0.0954 0.0010 0.0106 0.9299 0.9342 0.9210

l 0.2945 0.0009 0.0029 0.8184 -0.9737 -0.9812

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0 0 — — —

s 0.0189 0.0007 0.0346 0.0474 0.3010 0.3341

θ 0.7998 0.0098 0.0123 0.9294 0.9999 0.9998

ω 0.5000 0 0 — — —

Menu cost, κ = 50

µ 1.0835 0 0 — — —

gdp 0.2945 0.0048 0.0161 0.9341 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9242 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0007 0.0106 0.9299 0.9342 0.9210

Nc 0.0954 0.0010 0.0106 0.9299 0.9342 0.9210

l 0.2945 0.0009 0.0029 0.8184 -0.9737 -0.9812

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0 0 — — —

s 0.0189 0.0007 0.0346 0.0474 0.3010 0.3341

θ 0.7998 0.0098 0.0123 0.9294 0.9999 0.9998

ω 0.5000 0 0 — — —

Menu cost, κ = 100

µ 1.0835 0 0 — — —

gdp 0.2945 0.0048 0.0161 0.9341 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9242 0.9995 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0007 0.0106 0.9299 0.9342 0.9210

Nc 0.0954 0.0010 0.0106 0.9299 0.9342 0.9210

l 0.2945 0.0009 0.0029 0.8184 -0.9737 -0.9812

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0 0 — — —

s 0.0189 0.0007 0.0346 0.0474 0.3010 0.3341

θ 0.7998 0.0098 0.0123 0.9294 0.9999 0.9998

ω 0.5000 0 0 — — —

Table 4: Simulation-based moments in baseline model with fair bargaining and TFP shocks as driving force.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

Low customer bargaining power (η = 0.20)

µ 1.1526 0.0059 0.0052 0.2616 0.6868 0.6778

gdp 0.3021 0.0051 0.0168 0.9167 1.0000 0.9999

x 0.1918 0.0036 0.0190 0.9236 0.9998 1.0000

c 1.4000 0 0 — — —

N 0.0691 0.0007 0.0107 0.9256 0.9163 0.9213

Nc 0.0968 0.0010 0.0107 0.9256 0.9163 0.9213

l 0.3021 0.0007 0.0022 0.9498 -0.9942 -0.9955

w 0.9997 0.0190 0.0190 0.9216 0.9999 1.0000

p 1.1526 0.0059 0.0052 0.2616 0.6868 0.6778

s 0.0105 0.0004 0.0342 0.0311 0.0357 0.0235

θ 2.6707 0.0916 0.0343 0.9215 0.9999 1.0000

ω 0.2000 0 0 — — —

a 0.0281 0.0014 0.0494 0.3186 0.7270 0.7188

Equal bargaining power (η = 0.50)

µ 1.0835 0.0036 0.0033 0.1751 0.5557 0.5850

gdp 0.2945 0.0049 0.0166 0.9342 1.0000 0.9993

x 0.1918 0.0036 0.0190 0.9246 0.9996 1.0000

c 1.4000 0 0 — — —

N 0.0681 0.0008 0.0113 0.9274 0.9345 0.9212

Nc 0.0954 0.0011 0.0113 0.9274 0.9345 0.9212

l 0.2945 0.0007 0.0025 0.7866 -0.9626 -0.9718

w 0.9997 0.0190 0.0190 0.9216 0.9993 1.0000

p 1.0835 0.0036 0.0033 0.1751 0.5557 0.5850

s 0.0189 0.0007 0.0360 0.0187 0.0885 0.1237

θ 0.7996 0.0233 0.0292 0.9209 0.9992 1.0000

ω 0.5000 0 0 — — —

a 0.0152 0.0007 0.0494 0.2868 0.6624 0.6878

High customer bargaining power (η = 0.80)

µ 1.0452 0.0015 0.0015 0.2316 0.5364 0.5951

gdp 0.2846 0.0047 0.0165 0.9448 1.0000 0.9974

x 0.1919 0.0036 0.0189 0.9282 0.9985 0.9998

c 1.4000 0 0 — — —

N 0.0635 0.0007 0.0116 0.9368 0.9459 0.9202

Nc 0.0889 0.0010 0.0116 0.9368 0.9459 0.9202

l 0.2846 0.0008 0.0027 0.6392 -0.8747 -0.9072

w 0.9997 0.0190 0.0190 0.9216 0.9974 1.0000

p 1.0452 0.0015 0.0015 0.2316 0.5364 0.5951

s 0.0326 0.0011 0.0343 0.0824 0.1325 0.2022

θ 0.2338 0.0059 0.0251 0.9196 0.9970 1.0000

ω 0.8000 0 0 — — —

a 0.0076 0.0004 0.0468 0.3301 0.6403 0.6914

Table 5: Simulation-based moments, for various values of η, in basic model with Nash bargaining, κ = 0,

and TFP shocks as driving force. 48
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Figure 4: Steady-state allocation as function of customer bargaining power η.

µ a s θ N c Nc x gdp

1.0835 0.0267 0.1851 0.1443 0.2830 0.5951 0.1684 0.1276 0.3088

Table 6: Steady-state prices and quantities with intensive adjustment.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

Flexible prices, κ = 0

µ 1.0834 0.0030 0.0027 0.8317 0.9196 0.9701

gdp 0.3088 0.0044 0.0143 0.9613 1.0000 0.9874

x 0.1276 0.0022 0.0173 0.9484 0.9982 0.9952

c 0.5951 0.0012 0.0020 0.8868 -0.7597 -0.6487

N 0.2829 0.0035 0.0123 0.9783 0.9466 0.8840

Nc 0.1684 0.0018 0.0105 0.9827 0.9672 0.9151

l 0.3088 0.0016 0.0053 0.7549 -0.8355 -0.9115

w 0.9997 0.0190 0.0190 0.9216 0.9874 1.0000

p 1.0834 0.0030 0.0027 0.8317 0.9196 0.9701

s 0.1851 0.0032 0.0173 0.6639 -0.3275 -0.1772

θ 0.1442 0.0067 0.0466 0.9224 0.9878 1.0000

ω 0.5000 0.0000 — — — —

a 0.0267 0.0013 0.0473 0.7884 0.8672 0.9329

Menu cost, κ = 5

µ 1.0833 0.0084 0.0078 0.9802 0.9892 0.9553

gdp 0.3088 0.0044 0.0141 0.9601 1.0000 0.9882

x 0.1276 0.0022 0.0174 0.9459 0.9979 0.9960

c 0.5951 0.0012 0.0020 0.8827 -0.7379 -0.6274

N 0.2829 0.0034 0.0120 0.9791 0.9432 0.8816

Nc 0.1684 0.0017 0.0101 0.9834 0.9668 0.9165

l 0.3088 0.0017 0.0054 0.7710 -0.8540 -0.9233

w 0.9997 0.0190 0.0190 0.9216 0.9882 1.0000

p 1.0833 0.0084 0.0078 0.9802 0.9892 0.9553

s 0.1851 0.0031 0.0165 0.6694 -0.3077 -0.1616

θ 0.1442 0.0064 0.0447 0.9258 0.9903 0.9999

ω 0.5000 0.0034 0.0068 0.9397 -0.8392 -0.7470

a 0.0267 0.0012 0.0454 0.7967 0.8759 0.9375

Menu cost, κ = 20

µ 1.0832 0.0173 0.0160 0.9947 0.8147 0.7554

gdp 0.3088 0.0043 0.0138 0.9580 1.0000 0.9898

x 0.1276 0.0022 0.0176 0.9428 0.9978 0.9970

c 0.5951 0.0012 0.0020 0.8750 -0.6628 -0.5526

N 0.2829 0.0032 0.0112 0.9799 0.9375 0.8788

Nc 0.1684 0.0016 0.0095 0.9836 0.9676 0.9220

l 0.3088 0.0018 0.0057 0.7932 -0.8851 -0.9423

w 0.9997 0.0190 0.0190 0.9216 0.9898 1.0000

p 1.0832 0.0173 0.0160 0.9947 0.8147 0.7554

s 0.1851 0.0028 0.0151 0.6623 -0.2531 -0.1158

θ 0.1442 0.0058 0.0404 0.9294 0.9933 0.9996

ω 0.5001 0.0089 0.0178 0.9685 -0.5538 -0.4626

a 0.0267 0.0011 0.0416 0.8032 0.8857 0.9410

Menu cost, κ = 50

µ 1.0830 0.0225 0.0208 0.9973 0.5805 0.5337

gdp 0.3088 0.0041 0.0134 0.9559 1.0000 0.9912

x 0.1276 0.0023 0.0178 0.9401 0.9978 0.9977

c 0.5951 0.0011 0.0018 0.8415 -0.5144 -0.4056

N 0.2829 0.0029 0.0103 0.9803 0.9324 0.8771

Nc 0.1684 0.0015 0.0089 0.9837 0.9689 0.9277

l 0.3088 0.0018 0.0060 0.8133 -0.9109 -0.9574

w 0.9997 0.0190 0.0190 0.9216 0.9912 1.0000

p 1.0830 0.0225 0.0208 0.9973 0.5805 0.5337

s 0.1851 0.0025 0.0136 0.6410 -0.1672 -0.0388

θ 0.1442 0.0050 0.0347 0.9318 0.9953 0.9993

ω 0.5002 0.0126 0.0252 0.9681 -0.1732 -0.1076

a 0.0267 0.0010 0.0368 0.8038 0.8900 0.9407

Table 7: Simulation-based moments in model with intensive adjustment, Nash bargaining, and TFP shocks

as driving force.

51



Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z)

Flexible prices, κ = 5

µ 1.0835 0 0 — — —

gdp 0.3088 0.0037 0.0120 0.9475 1.0000 0.9952

x 0.1276 0.0024 0.0186 0.9325 0.9982 0.9993

c 0.5951 0.0007 0.0012 0.6530 0.6820 0.7494

N 0.2829 0.0018 0.0064 0.9805 0.9193 0.8768

Nc 0.1684 0.0012 0.0070 0.9821 0.9743 0.9477

l 0.3088 0.0022 0.0071 0.8677 -0.9664 -0.9869

w 0.9997 0.0190 0.0190 0.9216 0.9952 1.0000

p 1.0835 0 0 — — —

s 0.1851 0.0018 0.0095 0.5763 0.3775 0.4645

θ 0.1443 0.0017 0.0121 0.9428 0.9998 0.9969

ω 0.5000 0 0 — — —

a 0.0267 0.0005 0.0181 0.7691 0.8605 0.9062

Menu cost, κ = 20

µ 1.0835 0 0 — — —

gdp 0.3088 0.0037 0.0120 0.9475 1.0000 0.9952

x 0.1276 0.0024 0.0186 0.9325 0.9982 0.9993

c 0.5951 0.0007 0.0012 0.6530 0.6820 0.7494

N 0.2829 0.0018 0.0064 0.9805 0.9193 0.8768

Nc 0.1684 0.0012 0.0070 0.9821 0.9743 0.9477

l 0.3088 0.0022 0.0071 0.8677 -0.9664 -0.9869

w 0.9997 0.0190 0.0190 0.9216 0.9952 1.0000

p 1.0835 0 0 — — —

s 0.1851 0.0018 0.0095 0.5763 0.3775 0.4645

θ 0.1443 0.0017 0.0121 0.9428 0.9998 0.9969

ω 0.5000 0 0 — — —

a 0.0267 0.0005 0.0181 0.7691 0.8605 0.9062

Menu cost, κ = 50

µ 1.0835 0 0 — — —

gdp 0.3088 0.0037 0.0120 0.9475 1.0000 0.9952

x 0.1276 0.0024 0.0186 0.9325 0.9982 0.9993

c 0.5951 0.0007 0.0012 0.6530 0.6820 0.7494

N 0.2829 0.0018 0.0064 0.9805 0.9193 0.8768

Nc 0.1684 0.0012 0.0070 0.9821 0.9743 0.9477

l 0.3088 0.0022 0.0071 0.8677 -0.9664 -0.9869

w 0.9997 0.0190 0.0190 0.9216 0.9952 1.0000

p 1.0835 0 0 — — —

s 0.1851 0.0018 0.0095 0.5763 0.3775 0.4645

θ 0.1443 0.0017 0.0121 0.9428 0.9998 0.9969

ω 0.5000 0 0 — — —

a 0.0267 0.0005 0.0181 0.7691 0.8605 0.9062

Menu cost, κ = 100

µ 1.0835 0 0 — — —

gdp 0.3088 0.0037 0.0120 0.9475 1.0000 0.9952

x 0.1276 0.0024 0.0186 0.9325 0.9982 0.9993

c 0.5951 0.0007 0.0012 0.6530 0.6820 0.7494

N 0.2829 0.0018 0.0064 0.9805 0.9193 0.8768

Nc 0.1684 0.0012 0.0070 0.9821 0.9743 0.9477

l 0.3088 0.0022 0.0071 0.8677 -0.9664 -0.9869

w 0.9997 0.0190 0.0190 0.9216 0.9952 1.0000

p 1.0835 0 0 — — —

s 0.1851 0.0018 0.0095 0.5763 0.3775 0.4645

θ 0.1443 0.0017 0.0121 0.9428 0.9998 0.9969

ω 0.5000 0 0 — — —

a 0.0267 0.0005 0.0181 0.7691 0.8605 0.9062

Table 8: Simulation-based moments in model with intensive adjustment, fair bargaining, and TFP shocks

as driving force.
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Variable Mean Std. Dev. SD % Auto corr. Corr(x, Y ) Corr(x, Z) Corr(x, g)

Zero menu cost

µ 1.0835 0.0006 0.0006 -0.0650 -0.3222 — -0.3065

gdp 0.3368 0.0020 0.0061 0.7678 1.0000 — 0.9999

x 0.1868 0.0002 0.0013 0.7927 -0.9992 — -0.9997

c 1.4000 0 0 — — — —

N 0.0663 0.0001 0.0014 0.7949 -0.7672 — -0.7777

Nc 0.0929 0.0001 0.0014 0.7949 -0.7672 — -0.7777

l 0.3368 0.0020 0.0061 0.7678 1.0000 — 0.9999

w 1.0000 0 0 — — — —

p 1.0835 0.0006 0.0006 -0.0650 -0.3222 — -0.3065

s 0.0184 0.0002 0.0084 -0.0386 -0.5131 — -0.4988

θ 0.8000 0.0002 0.0002 0.8108 0.9974 — 0.9984

ω 0.5000 0 0 — — — —

a 0.0147 0.0001 0.0084 -0.0354 -0.4917 — -0.4773

Menu cost, κ = 5

µ 1.0835 0.0004 0.0003 0.6454 0.1137 — 0.1277

gdp 0.3368 0.0020 0.0061 0.7676 1.0000 — 0.9999

x 0.1868 0.0002 0.0013 0.7923 -0.9992 — -0.9997

c 1.4000 0 0 — — — —

N 0.0663 0.0001 0.0014 0.7978 -0.7669 — -0.7776

Nc 0.0929 0.0001 0.0014 0.7978 -0.7669 — -0.7776

l 0.3368 0.0020 0.0061 0.7676 1.0000 — 0.9999

w 1.0000 0 0 — — — —

p 1.0835 0.0004 0.0003 0.6454 0.1137 — 0.1277

s 0.0184 0.0002 0.0084 -0.0334 -0.5106 — -0.4961

θ 0.8000 0.0001 0.0001 0.6178 0.9807 — 0.9773

ω 0.5000 0.0003 0.0005 -0.1895 -0.4863 — -0.4741

a 0.0147 0.0001 0.0084 -0.0259 -0.5016 — -0.4871

Menu cost, κ = 20

µ 1.0835 0.0006 0.0006 0.9711 0.5143 — 0.5230

gdp 0.3368 0.0020 0.0061 0.7674 1.0000 — 0.9998

x 0.1868 0.0002 0.0013 0.7922 -0.9992 — -0.9997

c 1.4000 0 0 — — — —

N 0.0663 0.0001 0.0014 0.8000 -0.7664 — -0.7774

Nc 0.0929 0.0001 0.0014 0.8000 -0.7664 — -0.7774

l 0.3368 0.0020 0.0061 0.7674 1.0000 — 0.9998

w 1.0000 0 0 — — — —

p 1.0835 0.0006 0.0006 0.9711 0.5143 — 0.5230

s 0.0184 0.0002 0.0084 -0.0329 -0.4990 — -0.4840

θ 0.8000 0.0002 0.0002 0.8626 -0.9820 — -0.9851

ω 0.5000 0.0004 0.0008 0.2115 -0.5358 — -0.5267

a 0.0147 0.0001 0.0085 -0.0150 -0.5191 — -0.5044

Menu cost, κ = 100

µ 1.0835 0.0008 0.0007 0.9923 0.3406 — 0.3461

gdp 0.3368 0.0020 0.0060 0.7668 1.0000 — 0.9998

x 0.1868 0.0002 0.0013 0.7926 -0.9991 — -0.9997

c 1.4000 0 0 — — — —

N 0.0663 0.0001 0.0015 0.8012 -0.7658 — -0.7774

Nc 0.0929 0.0001 0.0015 0.8012 -0.7658 — -0.7774

l 0.3368 0.0020 0.0060 0.7668 1.0000 — 0.9998

w 1.0000 0 0 — — — —

p 1.0835 0.0008 0.0007 0.9923 0.3406 — 0.3461

s 0.0184 0.0002 0.0086 -0.0390 -0.4679 — -0.4518

θ 0.8000 0.0008 0.0010 0.8114 -0.9972 — -0.9984

ω 0.5000 0.0005 0.0011 0.5698 0.0485 — 0.0582

a 0.0147 0.0001 0.0090 0.0013 -0.5519 — -0.5368

Table 9: Simulation-based moments in basic model with government spending, Nash bargaining, and gov-

ernment purchase shocks as driving force.
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B Nash Bargaining

Here we derive the Nash-bargaining solution between an individual customer and the firm. We

present the most general case in which bargaining occurs over both price and quantity, and at the

end of the section we show how to simplify things if the quantity is fixed and bargaining occurs

only over price. For notational simplicity, we omit the conditional expectations operator Et where

it is understood.

The marginal value to the household of a family member who is already engaged in a relationship

(a shopper) with a firm is

Mt =
ũ(cit)
λt

− g′(1− lt − st −Nt)
λt

− pitcit + Et

[
Ξt+1|t ((1− ρx)Mt+1 + ρxSt+1)

]
. (55)

Here, pit denotes the price of the consumption good traded between a firm and a customer, and

cit denotes its quantity. The function ũ is the marginal utility to the household of obtaining

consumption from the i-th match. The precise expression for ũ depends on whether the household’s

aggregator over search consumption goods is linear (as in the baseline model) or displays curvature

(as in the model with intensive adjustment). For simplicity, here we assume that the aggregator

is linear, and the expression for ũ for the case with curvature is derived in Appendix E. Thus, let

y be defined as simply the sum of the ci’s, y ≡
∫N
0 cidi, in which case ũ(ci) is defined as u1(.) ∂y

∂ci
,

which reduces to ũ(ci) = u1(.). Because the units of ũ are utils, we convert it into units of the final

composite by dividing by the period-t marginal utility of wealth for the household, λt, which has

units of utils per final good.

The marginal value to the household of an individual who is searching for goods is

St = −g
′(1− lt − st −Nt)

λt
+ Et

[
Ξt+1|t

(
θtk

f (θt)(1− ρx)Mt+1 + (1− θtk
f (θt)(1− ρx))St+1

)]
.

(56)

The only instantaneous components of St is the marginal reduction in utility due to the marginal

reduction in total household leisure time because of searching.

The value to a firm of an existing customer is

At = pitcit −mctcit −
κ

2

(
pit

pit−1
− 1

)2

+ Et

[
Ξt+1|t(1− ρx)At+1

]
, (57)

where the instantaneous components takes into account the revenue from sales to the customer,

the total cost of production, and the cost of price adjustment.

Bargaining occurs every period over the price pit and quantity cit. The firm and customer

maximize the Nash product

(Mt − St)ηAt
1−η, (58)
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where η ∈ (0, 1) is the fixed weight given to the customer’s individual surplus. The first-order

condition of the Nash product with respect to pit is

η(Mt − St)η−1
(
∂Mt

∂pit
− ∂St

∂pit

)
At

1−η + (1− η)(Mt − St)ηAt
−η ∂At

∂pit
= 0, (59)

which can be condensed as usual to

(1− η) (Mt − St)
∂At

∂pit
= −ηAt

(
∂Mt

∂pit
− ∂St

∂pit

)
. (60)

We have ∂Mt
∂pit

= −cit, ∂St
∂pit

= 0, and

∂At

∂pit
= cit − κ

(
pit

pit−1
− 1

)
1

pit−1
+ (1− ρx)Et

[
Ξt+1|tκ

(
pit+1

pit
− 1

)
pit+1

pit

1
pit

]
, (61)

which reveals a second forward-looking element to pricing, independent of the forward-looking

element that arises due to the long-lived customer relationship.

Defining πit ≡ pit/pit−1 as the gross growth rate of the price of the i-th good,

∂At

∂pit
= cit − κ(πit − 1)

1
pit−1

+ (1− ρx)κEt

[
Ξt+1|t(πit+1 − 1)

πit+1

pit

]
. (62)

Next, define ∆H
t ≡ −∂Mt/∂pit, ∆F

t ≡ ∂At/∂pit, and thus

ωt ≡
η

η + (1− η)∆F
t /∆H

t

(63)

1− ωt =
(1− η)∆F

t /∆
H
t

η + (1− η)∆F
t /∆H

t

(64)

as time-varying bargaining weights. With these definitions, the sharing rule that determines pit is

(1− ωt)(Mt − St) = ωtAt. (65)

The surplus is split proportionally according to time-varying weights, which is a generalization of

the usual Nash-sharing rule. Note that if κ = 0 (i.e., there are no menu costs), ωt = η, in which

case the typical Nash sharing rule (1− η)(Mt − St) = ηAt emerges.

Using the Bellman equation for the value to a firm of an existing customer along with the

advertising condition, we have At = pitcit − mctcit − κ
2

(
pit

pit−1
− 1

)2
. Using this along with the

definitions of Mt and St and going through several algebraic rearrangements, we can, after some

tedious algebra, show that the price pit is characterized by

ωt

1− ωt

[
pitcit −mctcit −

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(cit)
λt

− pitcit+ (66)

+ (1− θtk
f (θt))Et

[
Ξt+1|t

(
ωt+1

1− ωt+1

)
(1− ρx)

[
pit+1cit+1 −mct+1cit+1 −

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
.
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Note there are two reasons why price-setting is forward-looking. One reason is a standard sticky-

price reason: with costs of price adjustment, a setting for pit has ramifications for future setting of

pit+1. But note that even with κ = 0, pit is affected by expectations regarding pit+1. This has to

do with the long-lived customer relationship: with probability 1 − ρx, the customer and firm will

bargain over the same good again in the future. If κ = 0, we have that ∂At/∂pit = cit, and the

bargaining weight collapses to ωt = η.

Bargaining over the quantity cit traded yields

η(Mt − St)η−1
(
∂Mt

∂cit
− ∂St

∂cit

)
At

1−η + (1− η)(Mt − St)ηAt
−η ∂At

∂cit
= 0. (67)

We have ∂Mt
∂cit

= ũ′(cit)
λt

− pit, ∂St
∂cit

= 0 (because of our maintained assumption that u is separable in

its two arguments), and ∂At
∂cit

= pit −mct. Thus, the sharing rule that determines cit is

(1− η)(Mt − St)
∂At

∂cit
= −ηAt

∂Mt

∂cit
. (68)

Similar to how we proceeded above in Nash bargaining over the price, we can define the following:

δH
t ≡ −∂Mt/∂cit, δF

t ≡ ∂At/∂cit, and thus

øt ≡
η

η + (1− η)δF
t /δ

H
t

(69)

1− øt ≡
(1− η)δF

t /δ
H
t

η + (1− η)δF
t /δ

H
t

(70)

as time-varying bargaining weights. Note that øt 6= ωt. Proceeding completely analogously as

above (i.e., using the Bellam equations for the value to a firm of an existing customer along with

the advertising condition and going through several tedious steps of algebra), we can show that the

quantity cit is characterized by

øt

1− øt

[
pitcit −mctcit −

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(cit)
λt

− pitcit+ (71)

+ (1− θtk
f (θt))Et

[
Ξt+1|t

(
øt+1

1− øt+1

)
(1− ρx)

[
pit+1cit+1 −mct+1cit+1 −

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
,

which is expression (50) in the text. Clearly, the only difference between (66) and (71) is in

the relevant bargaining weights. In particular, note that øt depends on ũ′(cit) through ∂Mt/∂cit,

whereas ωt does not. With curvature in the aggregator over search consumption goods, deriving the

expression for ũ′(cit) requires some tedious algebra, the details of which are provided in Appendix E.

If κ = 0, a more convenient representation of the solution for the quantity traded is available.

Using the derivatives of Mt and At, (68) becomes

(1− η) (pt −mct) (Mt − St) = η

(
pt −

ũ′(ct)
λt

)
At. (72)
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Next, recognize that, with κ = 0, the Nash solution for the price satisfies (1− η)(Mt − St) = ηAt.

Imposing this on the previous expression, we have that the quantity ct traded solves

mct =
ũ′(ct)
λt

. (73)

Recall that households’ optimal choice of labor implied λt = g′t/wt, meaning

mct
wt

=
ũ′(ct)
g′t

. (74)

Finally, because marginal cost is identically equal to the ratio of the real wage to the marginal

product of labor wt/zt, in equilibrium, the quantity traded in any given customer-firm relationship

satisfies
g′t

ũ′(ct)
= zt, (75)

which is a goods-market efficiency condition stating that the household’s MRS between leisure and

consumption of a particular good equals the marginal product of labor. Thus, with simultaneous

bargaining over price and quantity traded of any given good, quantity (the intensive margin of con-

sumption) is privately efficient, which is a standard outcome of Nash bargaining. One implication

of this result is that if consumption were subject to proportional taxation, the intensive margin of

trade would be unaffected by the consumption tax, given a number of customer-firm relationships

(which in general would be distorted by a consumption tax).

In our baseline model without the intensive margin, the customer and firm asset values Mt and

At simplify to

Mt =
ũ(c̄)
λt

− g′(1− lt − st −Nt)
λt

− pitc̄+ Et

[
Ξt+1|t ((1− ρx)Mt+1 + ρxSt+1)

]
(76)

and

At = pitc̄−mctc̄−
κ

2

(
pit

pit−1
− 1

)2

+ Et

[
Ξt+1|t(1− ρx)At+1

]
. (77)

That is, quantity exchanged in a customer match is fixed at c̄. Maximization of the Nash product

is now with respect to only pit. Proceeding similarly as above,

ωt

1− ωt

[
pitc̄−mctc̄−

κ

2

(
pit

pit−1
− 1

)2

+
γ

kf (θt)

]
=
ũ(c̄)
λt

− pitc̄+ (78)

+ (1− θtk
f (θt))Et

[
Ξt+1|t

(
ωt+1

1− ωt+1

)
(1− ρx)

[
pit+1c̄−mct+1c̄−

κ

2

(
pit+1

pit
− 1

)2

+
γ

kf (θt)

]]
,

which is expression (24) in the text.

C Fair Bargaining

Rather than the surplus being split according the time-varying rule (1 − ωt) (Mt − St) = ωtAt,

here we impose fair bargaining, in which it is required that (1 − η) (Mt − St) = ηAt. That is,
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suppose that the customer and firm arrange the effects of inflation so that the shares of the surplus

each gets are not time-varying.

In fair bargaining, the customer and firm jointly choose (pit, cit) to maximize the Nash product

(Mt − St)
η At

1−η (79)

subject to the constraint

(1− η) (Mt − St) = ηAt. (80)

Letting ιt be the Lagrange multiplier on the constraint, the first-order conditions of the bargaining

problem are

ηAt

[
∂Mt

∂pit
− ∂St

∂pit
+
∂At

∂pit

]
+ ηιt

∂At

∂pit

At
η

(Mt − St)1−η
= (1− η)ιt

[
∂Mt

∂pit
− ∂St

∂pit

]
At

η

(Mt − St)1−η
(81)

and

ηAt

[
∂Mt

∂cit
− ∂St

∂cit
+
∂At

∂cit

]
+ηιt

∂At

∂cit

At
η

(Mt − St)1−η
= (1−η)ιt

[
∂Mt

∂cit
− ∂St

∂cit

]
At

η

(Mt − St)1−η
. (82)

In obtaining these, we used the constraint to make the substitution (1−η)(Mt−St) = ηAt. Next,

because (1− η)(Mt−St) = ηAt, clearly (1− η)
[

∂Mt
∂pit

− ∂St
∂pit

]
= η ∂At

∂pit
, and similarly for derivatives

with respect to cit. The two first-order conditions thus reduce to

ηAt

[
∂Mt

∂pit
− ∂St

∂pit
+
∂At

∂pit

]
= 0 (83)

and

ηAt

[
∂Mt

∂cit
− ∂St

∂cit
+
∂At

∂cit

]
= 0. (84)

Because ηAt 6= 0, the terms in brackets characterize the fair bargaining solutions for pi and ci.

With the definitions of Mt, St, and At, ∂Mt
∂cit

= ũ′(cit)
λt

−pit, ∂St
∂cit

= 0 (because of our maintained

assumption that u is separable in its two arguments), and ∂At
∂cit

= pit −mct. Inserting these in the

latter FOC,
ũ′(cit)
λt

= mct. (85)

Once again, using the equilibrium condition λt = g′t/wt and the fact that mct = wt/zt = 1,

g′t
ũ′(ct)

= zt (86)

characterizes the solution for the quantity traded, just as in the Nash case with κ = 0. Thus, in

fair bargaining, eliminating the wedge in price-bargaining has the associated effect of eliminating

the wedge in quantity-bargaining as well. As was the case in Nash bargaining, the derivation of

ũ′(cit) is presented in Appendix E.
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Proceeding similarly, the price is characterized by

κ (πit − 1)πit − (1− ρx)Et

[
Ξt+1|tκ (πit+1 − 1)πit+1

]
= 0, (87)

which reveals something very interesting. If this were a monetary model and thus π were the rate

of change of the nominal price level, this condition would be identical to a standard New Keynesian

Phillips curve except for the fact that nothing at all about allocations appears.

D Steady-State Analytics

Using conditions (37) and (39), we first prove our claim in Section 4.2 that the steady-state price

(and hence the steady-state markup) decreases as customer bargaining power η rises. Using the

fact that Cobb-Douglas matching implies the probability a firm finds a customer is kf (θ) = θξ,

from (37) we can solve for θ:

θ =
[

β(1− ρx)
1− β(1− ρx)

p−mc

γ

] 1
ξ

. (88)

Inserting this in (39):

p = (1− η)A+ η

[
mc− γ

(
β(1− ρx)

1− β(1− ρx)
p−mc

γ

)]
. (89)

Defining an implicit function F (p, η) = 0 using this last expression, we can compute the partials

Fp = 1 +
ηγ

ξ

(
β(1− ρx)

γ[1− β(1− ρx)]

)(
β(1− ρx)

1− β(1− ρx)
p−mc

γ

) 1
ξ
−1

(90)

and

Fη = A−

mc− γ

(
β(1− ρx)

1− β(1− ρx)
p−mc

γ

) 1
ξ

 . (91)

With search frictions, γθξ > 0; the advertising condition then guarantees that p > mc. Hence,

given that all other parameters are of appropriate sign and magnitude (i.e., β ∈ (0, 1), ρx ∈ (0, 1),

η ∈ (0, 1), ξ ∈ (0, 1), and γ > 0), Fp > 0. Next, note that we can write Fη compactly as

Fη = A− (mc− γθ). If A < (mc− γθ), forming customer relationships would not even be socially

beneficial because the social marginal benefit (the utility A of consuming) would not cover the social

marginal cost of forming relationships and producing. Thus, we simply assume that A > (mc−γθ),
implying Fη > 0, Finally, then, we have by the implicit function theorem that the bargained price

decreases the higher is customer bargaining power, dp
dη = −Fη

Fp
< 0.

Next, to characterize the firm advertising condition in (a, s) space, first solve for p from (37):

p = mc+
1− β(1− ρx)
β(1− ρx)

γθξ. (92)
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Inserting this in (39) gives us a version of the advertising condition that embeds the pricing condi-

tion:

mc+
1− β(1− ρx)
β(1− ρx)

γθξ = (1− η)A+ η(mc− γθ). (93)

Replacing θ by a/s, we can define an implicit function G(a, s) = 0 using this last expression and

compute the partials

Ga =
1− β(1− ρx)
β(1− ρx)

γξaξ−1s−ξ + ηγs−1 (94)

and

Gs = −1− β(1− ρx)
β(1− ρx)

γaξs−ξ−1 − ηγas−2. (95)

By the implicit function theorem, the slope of the advertising condition in (a, s) space is thus
da
ds = −Gs

Ga
. With a couple of steps of algebra, it is not difficult to show that da

ds = θ, meaning that

in (a, s) space, the advertising condition is a ray through the origin with angle θ to the s axis, as

illustrated in Figure 2.

E Intensive Quantity Adjustment

For use in the Nash-bargaining and fair-bargaining solutions for quantity, we require an expression

for ũ′(cit). Recall that with curvature, the household subutility function over search consumption

goods is

v

[∫ Nt

0
cρjtdj

]1/ρ
 . (96)

With ũ(cit) defined as the marginal utility to the household of obtaining consumption from the

i-th match, we have

ũ(cit) = v′

[∫ Nt

0
cρjtdi

]1/ρ
 1
ρ

[∫ Nt

0
cρjtdj

] 1
ρ
−1

ρcρ−1
it . (97)

Note the distinction between the indices i and j: j is a dummy index of integration, while i denotes

a good obtained from the i-th customer relationship.

For use in the bargaining solutions for the intensive quantity, what requires some work is

obtaining ũ′(cit) because, note, cit appears three times in expression (97): as one of the consumption

terms in the argument to v(.), as one of the consumption terms in the integral
∫N
0 cρi di, and by

itself in the last term on the right-hand-side. To make the problem manageable, define

f(cit) ≡ v′

[∫ Nt

0
cρjtdj

]1/ρ
 , (98)

g(cit) ≡
1
ρ

[∫ Nt

0
cρjtdj

] 1
ρ
−1

, (99)
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h(cit) ≡ ρcρ−1
it . (100)

Letting z ≡ ũ(cit), what we are interested in deriving is ∂z
∂cit

= f ′gh+ fg′h+ fgh′. Proceeding,

f ′ = v′′

[∫ Nt

0
cρjtdj

]1/ρ
 1
ρ

[∫ Nt

0
cρjtdj

] 1
ρ
−1

ρcρ−1
it , (101)

g′ =
1
ρ

(
1
ρ
− 1

)[∫ Nt

0
cρjtdj

] 1
ρ
−2

ρcρ−1
it , (102)

h′ = ρ(ρ− 1)cρ−2
it . (103)

We limit attention to symmetric equilibria, so having computed derivatives, we can impose sym-

metry, ci = c, on f , g, h, f ′, g′, and h′, yielding

f = v′
(
ctN

1/ρ
t

)
, (104)

g =
1
ρ
c1−ρ
t N

1−ρ
ρ

t , (105)

h = ρcρ−1
t , (106)

f ′ = v′′
(
ctN

1/ρ
t

)
N

1−ρ
ρ

t , (107)

g′ =
1− ρ

ρ
c−ρ
t N

1−2ρ
ρ

t , (108)

h′ = ρ(ρ− 1)cρ−2
t . (109)

Constructing the symmetric version of f ′gh+ fg′h+ fgh′ and rearranging,

ũ′(ct) = N
1−ρ

ρ

t

[
v′′
(
ctN

1/ρ
t

)
N

1−ρ
ρ

t + v′
(
ctN

1/ρ
t

)
(1− ρ)c−1

t

(
1
Nt

− 1
)]

, (110)

which goes into the Nash- and fair-bargaining solutions for the intensive quantity traded. Note

that if we we were to remove curvature by setting ρ = 1, this collapses to ũ′(ct) = v′
(
ctN

1/ρ
t

)
.
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F Advertising Data

The aggregate advertising data are from two separate sources. The data for 1951 to 1999 are ob-

tained from an updated version of Robert J. Coen’s (McCann-Erikson, Inc.) original data published

in Historical Statistics of the United States, Colonial Times to 1970. The data for 2000 to 2005 are

obtained from the Newspaper Association of America (NAA). The aggregate data include spending

for advertising in newspapers, magazines, radio, broadcast television, cable television, direct mail,

billboards and displays, Internet, and other forms. The GDP figures are from the US Bureau of

Economic Analysis (BEA).

Using the nominal data in Table 10, we construct a real advertising series by deflating by the

all-items Consumer Price Index (results were quite similar deflating by the GDP deflator). Logging

and HP-filtering the resulting series, we find that over the entire sample the cyclical volatility of real

advertising is 4.2 percent, the contemporaneous correlation with GDP is 0.73, and its first-order

serial correlation is 0.6.
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Year Aggregate nominal advertising expenditure ($B) Nominal GDP ($B) Share of GDP (%)

1950 5.7 293.8 1.9

1951 6.4 339.3 1.9

1952 7.1 358.3 2.0

1953 7.7 379.4 2.0

1954 8.2 380.4 2.1

1955 9.2 414.8 2.2

1956 9.9 437.5 2.3

1957 10.3 461.1 2.2

1958 10.3 467.2 2.2

1959 11.3 506.6 2.2

1960 12.0 526.4 2.3

1961 11.9 544.7 2.2

1962 12.4 585.6 2.1

1963 13.1 617.7 2.1

1964 14.2 663.6 2.1

1965 15.3 719.1 2.1

1966 16.6 787.8 2.1

1967 16.9 832.6 2.0

1968 18.1 910.0 2.0

1969 19.4 984.6 2.0

1970 19.6 1,038.5 1.9

1971 20.7 1,127.1 1.8

1972 23.2 1,238.3 1.9

1973 25.0 1,382.7 1.8

1974 26.6 1,500.0 1.8

1975 27.0 1,638.3 1.7

1976 33.3 1,825.3 1.8

1977 37.4 2,030.9 1.8

1978 43.3 2,294.7 1.9

1979 48.8 2,563.3 1.9

1980 53.6 2,789.5 1.9

1981 60.5 3,128.4 1.9

1982 66.7 3,255.0 2.0

1983 76.0 3,536.7 2.1

1984 88.0 3,933.2 2.2

1985 94.9 4,220.3 2.2

1986 102.4 4,462.8 2.3

1987 110.3 4,739.5 2.3

1988 118.8 5,103.8 2.3

1989 124.8 5,484.4 2.3

1990 129.6 5,803.1 2.2

1991 127.6 5,995.9 2.1

1992 132.7 6,337.7 2.1

1993 139.5 6,657.4 2.1

1994 151.7 7,072.2 2.1

1995 162.9 7,397.7 2.2

1996 175.2 7,816.9 2.2

1997 187.5 8,304.3 2.3

1998 201.6 8,747.0 2.3

1999 215.3 9,268.4 2.3

2000 243.3 9,817.0 2.5

2001 231.3 10,128.0 2.3

2002 236.9 10,469.6 2.3

2003 245.6 10,960.8 2.2

2004 263.8 11,712.5 2.3

2005 271.1 12,455.8 2.2

Table 10: Advertising Data
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